【题目】一只红玲虫的产卵数和温度有关.现收集了7组观测数据如下表:
温度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 |
产卵数/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 |
为了预报一只红玲虫在时的产卵数,根据表中的数据建立了与的两个回归模型.模型①:先建立与的指数回归方程,然后通过对数变换,把指数关系变为与;模型②:先建立与的二次回归方程,然后通过变换,把二次关系变为与的线性回归方程:.
(1)分别利用这两个模型,求一只红玲虫在时产卵数的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(参考数据:模型①的残差平方和,模型①的相关指数;模型②的残差平方和,模型②的相关指数;,,;,,,,,,)
【答案】(1),(2)模型①得到的预测值更可靠,理由见解析
【解析】
(1)把分别代入两个模型求解即可;
(2)通过残差及相关指数的大小进行判定比较.
(1)当时,根据模型①,得, ,根据模型②,得.
(2)模型①得到的预测值更可靠.理由1:因为模型①的残差平方和小于模型②的残差平方和,所以模型①得到的预测值比模型②得到的预测值更可靠;理由2:模型①的相关指数大于模型②的相关指数,所以模型①得到的预测值比模型②得到的预测值更可靠;理由3:因为由模型①,根据变换后的线性回归方程计算得到的样本点分布在一条直线的附近;而由模型②,根据变换后的线性回归方程得到的样本点不分布在一条直线的周围,因此模型②不适宜用来拟合与的关系;所以模型①得到的预测值比模型②得到的预测值更可靠.(注:以上给出了3种理由,考生答出其中任意一种或其他合理理由均可得)
科目:高中数学 来源: 题型:
【题目】已如椭圆C:的两个焦点与其中一个顶点构成一个斜边长为4的等腰直角三角形.
(1)求椭圆C的标准方程;
(2)设动直线l交椭圆C于P,Q两点,直线OP,OQ的斜率分别为k,k'.若,求证△OPQ的面积为定值,并求此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,已知椭圆,若圆的一条切线与椭圆有两个交点,且.
(1)求圆的方程;
(2)已知椭圆的上顶点为,点在圆上,直线与椭圆相交于另一点,且,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80及以上的花苗为优质花苗.
(1)求图中的值,并估计该品种花苗综合评分的平均数(同一组中的数据用该组区间的中点值为代表);
(2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培驻外方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(参考公式:,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现计划用两张铁丝网在一片空地上围成一个梯形养鸡场,,,已知两段是由长为的铁丝网折成,两段是由长为的铁丝网折成.设上底的长为,所围成的梯形面积为.
(1)求S关于x的函数解析式,并求x的取值范围;
(2)当x为何值时,养鸡场的面积最大?最大面积为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》中《方田》章有弧田面积计算问题,计算术曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面积计算公式为:弧田面积(弦乘矢+矢乘矢),弧田是由圆弧(简称为弧田的弧)和以圆弧的端点为端点的线段(简称 (弧田的弦)围成的平面图形,公式中“弦”指的是弧田的弦长,“矢”等于弧田的弧所在圆的半径与圆心到弧田的弦的距离之差.现有一弧田,其弦长等于,其弧所在圆为圆,若用上述弧田面积计算公式计算得该弧田的面积为,则( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,则下列关于函数的说法,不正确的是( )
A.的图象关于对称
B.在上有2个零点
C.在区间上单调递减
D.函数图象向右平移个单位,所得图像对应的函数为奇函数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com