精英家教网 > 高中数学 > 题目详情
2.在正方体A'C中,D'A与BD所成的角的度数为(  )
A.30°B.45°C.60°D.90°

分析 连结B′D′,AB′,BD∥B′D′,∠AD′B′是异面直线BD与AD′所成的角,由△AB′D′是等边三角形,能求出异面直线BD与AD′所成的角.

解答 解:连结B′D′,AB′,
∵BD∥B′D′,∴∠AD′B′是异面直线BD与AD′所成的角,
∵△AB′D′是等边三角形,
∴∠AD′B′=60°,
∴异面直线BD与AD′所成的角为60°.
故选C.

点评 本题主要考查了空间两异面直线及其所成的角的求法,根据异面直线所成角的定义,寻找平行线是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知a>0,函数f(x)=ax3-3x,g(x)=-$\frac{3}{2}$(a+2)x2+9x-3
(1)若a=1,求曲线y=f(x)在点x=2处的切线方程;
(2)若h(x)=f(x)+g(x),求函数h(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设幂函数f(x)=(a-1)xk(a∈R,k∈Q)的图象经过点$(\sqrt{2},2)$,则a+k=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1,|{\overrightarrow a-2\overrightarrow b}|=2\sqrt{3}$,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.30oB.60oC.120oD.150o

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法错误的是(  )
A.棱台的各侧棱延长后相交于一点
B.如果不在同一平面内的两个相似的直角三角形的对应边互相平行,则连接它们的对应顶点所围成的多面体是三棱台
C.圆台上底圆周上任一点与下底圆周上任一点的连线都是圆台的母线
D.用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\overrightarrow a=(2,-1,2)$,$\overrightarrow b=(-4,2,x)$且$\overrightarrow a⊥\overrightarrow b$,则x的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.平面四边形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,将其沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,若四面体A′-BCD顶点在同一个球面上,则该球的表面积3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求满足下列条件的椭圆方程:
(1)长轴在x轴上,长轴长为12,离心率为$\frac{2}{3}$;
(2)经过点(-6,0)和(0,8)
(3)$a=6,e=\frac{1}{3}$
(4)长轴长是短轴长的2倍,椭圆经过(3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法错误的是(  )
A.命题“若x2-4x+3=0,则x=3或x=1”的逆否命题是“若x≠3且x≠1,则x2-4x+3=0≠0”
B.“x2-x=0”是“x=1”的必要不充分条件
C.若p∨q为真命题,则p,q均为真命题
D.命题p:?x∈R,使得x3+x+1=0,则¬p:?x∈R,使得x3+x+1≠0

查看答案和解析>>

同步练习册答案