精英家教网 > 高中数学 > 题目详情
1.函数$y=2sin(\frac{π}{3}-x)-cos(\frac{π}{6}+x)(0≤x≤π)$的值域是(  )
A.$[-1,\frac{{\sqrt{3}}}{2}]$B.[-1,1]C.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$D.$[-\frac{{\sqrt{3}}}{2},1]$

分析 由条件利用三角恒等变换化简函数的解析式,再根据余弦函数的定义域和值域求得函数的值域.

解答 解:函数$y=2sin(\frac{π}{3}-x)-cos(\frac{π}{6}+x)(0≤x≤π)$=2($\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx)-($\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx)
=$\frac{\sqrt{3}}{2}$cosx-$\frac{1}{2}$sinx=cos(x+$\frac{π}{6}$).
由x∈[0,π],求得x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],∴cos(x+$\frac{π}{6}$)∈[-1,$\frac{\sqrt{3}}{2}$],
故选:A.

点评 本题主要考查三角恒等变换,余弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.△ABC中,角A,B,C的对边分别为a,b,c,若2sinB-sinC=2sin(A-C).
(1)求cosA;
(2)若a=$\sqrt{10}$,b+c=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线C:y2=2px(p>0)上的点(2,a)到焦点F的距离为3.
(Ⅰ)求抛物线的标准方程;
(Ⅱ)设不过原点O的直线l与该抛物线相交于点P、Q,直线OP、PQ、OQ的斜率满足kOP+kPQ+kOQ=0,且△OPQ的面积为$\sqrt{5}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)=x2-ax+a(x∈R),数列$\{a_n^{\;}\}$的前n项和Sn=f(n),且f(x)同时满足:①不等式f(x)≤0的解集有且只有一个元素;②在定义域内存在0<x1<x2,使得不等式f(x1)>f(x2)成立.
(1)求函数f(x)的表达式;     
(2)求数列$\{a_n^{\;}\}$的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.“0<a<b”是“($\frac{1}{4}$)a>($\frac{1}{4}$)b”的充分不必要条件.(填充分而不必要条件、必要而不充分件、充分条件、既不充分也不必要条件中一个)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin182°cos28°-cos2°sin28°的值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.海南华侨中学三亚学校高三7班拟制定奖励条例,对在学习中取得优异成绩的学生实行奖励,其中有一个奖励项目是针对学生月考成绩的高低对该学生进行奖励的.奖励公式为f(n)=k(n)(n-10),n>10(其中n是该学生月考平均成绩与重点班平均分之差,f(n)的单位为元),而$k(n)=\left\{{\begin{array}{l}{0,(n≤10)}\\{2,(10<n≤15)}\\{4,(15<n≤20)}\\{6,(n>20)}\end{array}}\right.$.现有甲、乙两位学生,甲学生月考平均分超出重点班平均分18分,而乙学生月考平均分超出重点班平均分21分.问乙所获得奖励比甲所获得奖励多几元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=x2+2bx的图象在点A(0,f(0))处的切线l与直线x+y+3=0垂直,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则S2011的值为(  )
A.$\frac{2012}{2011}$B.$\frac{2010}{2011}$C.$\frac{2013}{2012}$D.$\frac{2011}{2012}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若函数f(x),g(x)分别为R上的奇函数、偶函数,且满足f(x)-g(x)=ex
(1)求函数f(x)的解析式.
(2)求g(0)的值.

查看答案和解析>>

同步练习册答案