精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C的对边分别为a,b,c,若$B+C=\frac{2π}{3}$,$a=\sqrt{2}$,则b2+c2的取值范围是(  )
A.(3,6)B.(3,6]C.(2,4)D.(2,4]

分析 根据三角形两边之和大于第三边,可得b2+c2>2.再根据余弦定理结合基本不等式,可得b2+c2的最大值为4,由此可得b2+c2的取值范围.

解答 解:∵A=$\frac{π}{3}$,a=$\sqrt{2}$,
∴根据余弦定理,得a2=b2+c2-2bccosA,即b2+c2-bc=2
∴bc=b2+c2-2≤$\frac{{b}^{2}+{c}^{2}}{2}$,得b2+c2≤4,
又∵b+c>a=$\sqrt{2}$,∴b2+c2>2
综上所述,b2+c2的取值范围为(2,4].
故选:D.

点评 本题给出三角形一边和它的对角,求另两边的平方和的取值范围,着重考查了余弦定理和基本不等式等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列各组函数表示相等函数的是(  )
A.y=$\frac{{x}^{2}-4}{x-2}$与y=x+2B.y=$\sqrt{{x}^{2}-3}$与y=x-3
C.y=2x-1(x≥0)与s=2t-1(t≥0)D.y=x0与y=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设i是虚数单位,$\overline Z$是复数Z的共轭复数,若$Z=\frac{{2{i^3}}}{1+i}$,则$\overline Z$=-1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)椭圆的短轴长等于2,长轴端点与短轴端点间的距离等于$\sqrt{5}$,求此椭圆的标准方程;
(2)已知双曲线2x2-y2=k的焦距等于6,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)的定义域为[0,1],求f(1-$\sqrt{3}$tanx)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-4{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,当该区域的面积为2时,z=x+2y的最大值是(  )
A.5B.0C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数a,b满足4a=3b=6,则$\frac{1}{a}+\frac{2}{b}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若c2>a2+b2,则△ABC必是钝角(填锐角,钝角,直角)三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于给定的正数K,定义函数fK(x)=$\left\{\begin{array}{l}{f(x),f(x)≤K}\\{K,f(x)>K}\end{array}\right.$,已知函数f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-2x}$(0≤x<3),对其定义域内的任意x,恒有fK(x)=f(x),则(  )
A.K上最小值为$\frac{1}{27}$B.K的最小值为3C.K的最大值为$\frac{1}{27}$D.K的最大值为3

查看答案和解析>>

同步练习册答案