精英家教网 > 高中数学 > 题目详情
7.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2.
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求|2$\overrightarrow{a}$-$\overrightarrow{b}$|;
(2)若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,求k的值.

分析 (1)由|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(2\overrightarrow{a}-\overrightarrow{b})^{2}}$,结合已知条件利用向量的数量积公式能求出结果.
(2)由向量互相垂直的性质得(k$\overrightarrow{a}$+$\overrightarrow{b}$)•(k$\overrightarrow{a}$-$\overrightarrow{b}$)=0,由此能求出k的值.

解答 解:(1)∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,
∴|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{(2\overrightarrow{a}-\overrightarrow{b})^{2}}$
=$\sqrt{4{\overrightarrow{a}}^{2}+{\overrightarrow{b}}^{2}-4\overrightarrow{a}•\overrightarrow{b}}$
=$\sqrt{4+4-4×1×2×cos60°}$=2.
(2)∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,向量k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,
∴(k$\overrightarrow{a}$+$\overrightarrow{b}$)•(k$\overrightarrow{a}$-$\overrightarrow{b}$)=${k}^{2}{\overrightarrow{a}}^{2}$-$\overrightarrow{{b}^{2}}$=k2-4=0,
解得k=±2.

点评 本题考查向量的模的求法,考查实数值的求法,是基础题,解题时要认真审题,注意向量的数量积的求法和向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若x、y>0,且$\frac{1}{x}+\frac{2}{y}=1$,则x+2y的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}的通项公式an=13-2n,Sn是其前n项和,下列各式正确的是(  )
A.S6<0B.S7<0C.S12<0D.S13<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知单位向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$两两垂直,化简(2$\overrightarrow{a}$$-2\overrightarrow{b}$$+4\overrightarrow{c}$)•(-$\overrightarrow{a}$$-3\overrightarrow{b}$$+2\overrightarrow{c}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的方程log2(x+24)-log4x2=a在区间(3,8)内有解,则a的取值范围是a∈(2,log29).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.sin1cos2tan3值的符号是正(填“正”或“负”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.写出:从0,1,2,3,4五个数字中任取两个数字组成的所有两位数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C的方程为x2+y2+(m-2)x+(m+1)y+m-2=0.根据下列条件确定实数m的取值.并写出相应的圆心坐标和半径.
(1)圆的面积最小;
(2)圆心距离坐标原点最近.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知0<a<1,若loga$\frac{2}{3}$<1,则实数a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(0,1)C.(0,$\frac{2}{3}$)D.(0,$\frac{2}{3}$]

查看答案和解析>>

同步练习册答案