精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx=a--lnxgx=ex-ex+1

1)若a=2,求函数fx)在点(1f1))处的切线方程;

2)若fx=0恰有一个解,求a的值;

3)若gx≥fx)恒成立,求实数a的取值范围.

【答案】11;(2

【解析】试题分析:(1)f'1=0得切线斜率为1,进而得切线方程;

2mx=+lnx求导得函数单调性和最值,进而得解;

3由()知函数的最大值为f1=a-1gx=ex-ex+1,求导可得函数gx)的最小值为g1=11≥a-1进而得解.

试题解析:

1a=2f'x=f'1=0切线方程为y=1

2)令mx=+lnxm'x=-+

x在(01)时,m'x)>0mx)递增,

x在(1+∞)是,m'x)<0mx递减,

mx)的最大值为m1=1

fx=0恰有一个解,即y=a,与mx)只有一个交点,a=1

)由()知函数的最大值为f1=a-1gx=ex-ex+1g'x=ex-e

x在(01)时,g'x)<0gx)递减,

x在(1+∞)时,g'x)>0gx)递增,

函数gx)的最小值为g1=1gxfx)恒成立,∴1≥a-1a≤2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCDMN分别是PABC的中点,且AD=2PD=2.

(1)求证:MN∥平面PCD

(2)求证:平面PAC⊥平面PBD

(3)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2x-2sin2x-a.

①若f(x)=0在x∈R上有解,则a的取值范围是______

②若x1,x2是函数y=f(x)在[0,]内的两个零点,则sin(x1+x2)=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(cosθ,sinθ),=(cosβ,sinβ).

(1)若,求的值;

(2)若记f(θ)=,θ∈[0,].当1≤λ≤2时,求f(θ)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P0-2),椭圆E 的离心率为F是椭圆E的右焦点,直线PF的斜率为2O为坐标原点.

1)求椭圆E的方程;

2)直线l被圆Ox2+y2=3截得的弦长为3,且与椭圆E交于AB两点,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面是正三角形,且与底面垂直,底面是边长为2的菱形, 的中点,过三点的平面交 的中点,求证:

(1)平面

(2)平面

(3)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面使用类比推理正确的是(  )

A. a(bc)abac类比推出“cos(αβ)cosαcosβ

B. 3a3b,则ab类比推出acbc,则ab

C. 平面中垂直于同一直线的两直线平行类比推出空间中垂直于同一平面的两平面平行

D. 等差数列{an}中,若a100,则a1a2ana1a2a19n(n19nN*)”类比推出在等比数列{bn}中,若b91,则有b1b2bnb1b2b17n(n17nN*)”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|x+a|(a>-2)的图象过点(2,1).

(1)求实数a的值;

(2)设,在如图所示的平面直角坐标系中作出函数y=gx)的简图,并写出(不需要证明)函数gx)的定义域、奇偶性、单调区间、值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程为 (t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2sin θ.

(1)C1的参数方程化为极坐标方程;

(2)C1C2交点的极坐标(ρ≥0,0≤θ<2π)

查看答案和解析>>

同步练习册答案