精英家教网 > 高中数学 > 题目详情

矩形ABCD与矩形ABEF的公共边为AB,且平面ABCD平面ABEF,如图所示,FD, AD=1, EF=

   (Ⅰ)证明:AE 平面FCB;

   (Ⅱ)求异面直线BD与AE所成角的余弦值

   (Ⅲ)若M是棱AB的中点,在线段FD上是否存在一点N,使得MN∥平面FCB?

证明你的结论.

(Ⅰ)见解析

(Ⅱ)

(Ⅲ)见解析


解析:

 (1) 平面ABCD平面ABEF,

且四边形ABCD与ABEF是矩形,

AD平面ABEF,ADAE,

BC∥AD BCAE

又FD=2,AD=1,所以AF=EF=,

所以四边形ABEF为正方形.AEFB,

又BFBF平面BCF,BC平面BCF

所以AE平面BCF……………………………………………4分

(2)设BFAE=O,取FD的中点为H,连接OH,在 OH//BD,

HOF即为异面直线BD与AE所成的角(或补角),

中,OH=1,FH=1,FO=,cosHOF=

异面直线BD与AE所成的角的余弦值为………………………….8分

(3)当N为FD的中点时, MN∥平面FCB

证明:取CD的中点G,连结NG,MG,MN,

则NG//FC,MG//BC,

又NG平面NGM,MG平面NGM且NGMG=G

所以平面NGM//平面FBC,

MN平面NGM

MN//平面FBC……………………………………………………………12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,椭圆C0
x2
a2
+
y2
b2
=1(a>b>0
,a,b为常数),动圆C1x2+y2=
t
2
1
,b<t1<a.点A1,A2分别为C0的左,右顶点,C1与C0相交于A,B,C,D四点.
(Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;
(Ⅱ)设动圆C2x2+y2=
t
2
2
与C0相交A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:
t
2
1
+
t
2
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•辽宁)如图,已知椭圆C0
x2
a2
+
y2
b2
=1(a>b>0,a,b为常数)
,动圆C1x2+y2=
t
2
1
,b<t1<a
.点A1,A2分别为C0的左右顶点,C1与C0相交于A,B,C,D四点.
(I)求直线AA1与直线A2B交点M的轨迹方程;
(II)设动圆C2x2+y2=
t
2
2
与C0相交于A',B',C',D'四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A'B'C'D'的面积相等,证明:
t
2
1
+
t
2
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD与矩形AB′C′D全等,且所在平面所成的二面角为α,记两个矩形对角线的交点分别为Q,Q′,AB=a,AD=b.

(1)求证:QQ′∥平面ABB′;

(2)当b=2a,且α=时,求异面直线AC与DB′所成的角;

(3)当a>b,且AC⊥DB′时,求二面角α的余弦值(用a,b表示).

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省珠海一中高二(上)期中数学试卷(理科)(解析版) 题型:填空题

如图,椭圆C,a,b为常数),动圆,b<t1<a.点A1,A2分别为C的左,右顶点,C1与C相交于A,B,C,D四点.
(Ⅰ)求直线AA1与直线A2B交点M的轨迹方程;
(Ⅱ)设动圆与C相交A′,B′,C′,D′四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A′B′C′D′的面积相等,证明:为定值.

查看答案和解析>>

科目:高中数学 来源:2012年辽宁省高考数学试卷(理科)(解析版) 题型:解答题

如图,已知椭圆C,动圆C1.点A1,A2分别为C的左右顶点,C1与C相交于A,B,C,D四点.
(I)求直线AA1与直线A2B交点M的轨迹方程;
(II)设动圆C2与C0相交于A',B',C',D'四点,其中b<t2<a,t1≠t2.若矩形ABCD与矩形A'B'C'D'的面积相等,证明:为定值.

查看答案和解析>>

同步练习册答案