精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中

(Ⅰ)若曲线在点处的切线方程为,其中是自然对数的底数,求的值:

(Ⅱ)若函数内的减函数,求正数的取值范围;

(Ⅲ)若方程无实数根,求实数的取值范围.

【答案】(Ⅰ)1;(Ⅱ);(Ⅲ)

【解析】

(Ⅰ)先对函数求导,然后根据导数的几何意义及已知切线方程即可求解;

(Ⅱ)结合导数与单调性的关系可转化为内恒成立,结合函数的性质可求;

(Ⅲ)结合导数及函数的性质,进行合理的转化后结合导数可求.

解:(Ⅰ)已知

由曲线在点处的切线方程为

可得,得

解得:.

(Ⅱ)若函数内的减函数,

内恒成立,

,则

时,上单调递增,

所以

②若,当单调递增,

所以

时,时,单调递减,

综上,时,满足题意;

(Ⅲ)由可得

,则是方程的根,故

,则无实根,

,令,则

方程可化为

,则

时,单调递增,

时,单调递减,

所以

没有实根,则

解得:

综上:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】AB两种品牌各三种车型20177月的销量环比(与20176月比较)增长率如下表:

A品牌车型

A1

A2

A3

环比增长率

-7.29%

10.47%

14.70%

B品牌车型

B1

B2

B3

环比增长率

-8.49%

-28.06%

13.25%

根据此表中的数据,有如下关于7月份销量的四个结论:①A1车型销量比B1车型销量多;

②A品牌三种车型总销量环比增长率可能大于14.70%;

③B品牌三款车型总销量环比增长率可能为正;

④A品牌三种车型总销量环比增长率可能小于B品牌三种车型总销量环比增长率.

其中正确结论的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论在区间上的单调性;

2)若时,,求整数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某摄影协会在201910月举办了主题庆祖国70华诞——我们都是追梦人摄影图片展.通过平常人的镜头,记录了国强民富的幸福生活,向祖国母亲70岁的生日献了一份厚礼.摄影协会收到了来自社会各界的大量作品,从众多照片中选取100张照片展出,其参赛者年龄集中在之间,根据统计结果,做出频率分布直方图如下:

1)求这100位作者年龄的样本平均数和样本方差(同一组数据用该区间的中点值作代表);

2)由频率分布直方图可以认为,作者年龄X服从正态分布,其中近似为样本平均数近似为样本方差.

i)利用该正态分布,求

附:,若,则.

ii)摄影协会从年龄在的作者中,按照分层抽样的方法,抽出了7人参加讲述图片背后的故事座谈会,现要从中选出3人作为代表发言,设这3位发言者的年龄落在区间的人数是Y,求变量Y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点.

1)求椭圆的方程;

2)过点作直线交椭圆两点,若点关于轴的对称点为,证明直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)用表示中的最大值,设函数,讨论零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面,点是矩形内(含边界)的动点,且,直线与平面所成的角为.记点的轨迹长度为,则______;当三棱锥的体积最小时,三棱锥的外接球的表面积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:当时,有最小值,无最大值;

2)若在区间上方程恰有一个实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.

有声书公司将付费高于元的用户定义为“爱付费用户”,将年龄在岁及以下的用户定义为“年轻用户”.已知抽取的样本中有的“年轻用户”是“爱付费用户”.

(1)完成下面的列联表,并据此资料,能否有的把握认为用户“爱付费”与其为“年轻用户”有关?

爱付费用户

不爱付费用户

合计

年轻用户

非年轻用户

合计

(2)若公司采用分层抽样方法从“爱付费用户”中随机选取人,再从这人中随机抽取人进行访谈,求抽取的人恰好都是“年轻用户”的概率.

查看答案和解析>>

同步练习册答案