精英家教网 > 高中数学 > 题目详情

【题目】已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于两点,且.

1)求抛物线的方程;

2)求过点且与抛物线的准线相切的圆的方程.

【答案】12

【解析】

1)设直线的方程为与抛物线联立,结合,利用韦达定理可求解p,即得解;

2)利用韦达定理,可得的中点为,可求解AB的垂直平分线的方程,圆心为,利用圆半径、弦长、弦心距的勾股关系,可求解a,可得圆方程.

解:(1)由题意设直线的方程为,令

联立

根据抛物线的定义得

故所求抛物线方程为

2)由(1)知

的中点为的垂直平分线方程为

设过点的圆的圆心为

该圆与的准线相切,

半径

圆心到直线的距离为

,解得

圆心的坐标为,半径为,或圆心的坐标为,半径为

圆的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某乡镇为了发展旅游行业,决定加强宣传,据统计,广告支出费与旅游收入(单位:万元)之间有如下表对应数据:

2

4

5

6

8

30

40

60

50

70

1)求旅游收入对广告支出费的线性回归方程,若广告支出费万元,预测旅游收入;

2)在已有的五组数据中任意抽取两组,根据(1)中的线性回归方程,求至少有一组数据,其预测值与实际值之差的绝对值不超过的概率.(参考公式:,其中为样本平均值,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015秋海口校级期中)直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若满足①;②当,且时,都有;③当,且时,都有,则称为“偏对称函数”.现给出四个函数:.则其中是“偏对称函数”的函数个数为(

A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的半径为3,圆心在轴正半轴上,直线与圆相切.

(1)求圆的标准方程;

(2)过点的直线与圆交于不同的两点而且满足求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,过坐标原点作两条互相垂直的射线与椭圆分别交于两点.

1)证明:当取得最小值时,椭圆的离心率为.

2)若椭圆的焦距为2,是否存在定圆与直线总相切?若存在,求定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明和爸爸妈妈、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小 明的父母至少有一人与小明相邻,则不同的坐法总数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上单调递增,求实数的取值范围;

2)若,对,恒有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)讨论函数的单调性;

(Ⅱ)已知,设函数的最大值为,求证:.

查看答案和解析>>

同步练习册答案