精英家教网 > 高中数学 > 题目详情
“x>0”是“x≠0”的
充分不必要
充分不必要
条件;(填“充分不必要”、“必要不充分”、“充要”、“非充分非必要”)
分析:将题设中的命题改写成命题的形式,分别判断它的真假及其逆命题的真假,再依据充分条件,必要条件的定义作出判断得出正确答案
解答:解:原命题:若“x>0”则“x≠0”,此是个真命题
其逆命题:若“x≠0”,则“x>0”,是个假命题,因为当“x≠0”时“x<0”,也可能成立,故不一定得出“x>0”,
综上知“x>0”是“x≠0”的充分不必要条件
故答案为:充分不必要.
点评:本题考查充分条件必要条件的判断,解题的关键是熟练掌握充分条件与必要条件的定义,本题是基本概念考查题,难度较低,在高考中出现的机率较小
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
(x+1)0
|x|-x
的定义域是(  )
A、{x|x<0}
B、{x|x>0}
C、{x|x<0且x≠-1}
D、{x|x≠0且x≠-1,x∈R}

查看答案和解析>>

科目:高中数学 来源: 题型:

13、“x>0”是“x≠0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•重庆一模)已知x,y∈R,则“x•y=0”是“x=0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+kbx(x>0)与函数g(x)=ax+blnx,a、b、k为常数,它们的导函数分别为y=f′(x)与y=g′(x)
(1)若g(x)图象上一点p(2,g(2))处的切线方程为:x-2y+2ln2-2=0,求a、b的值;
(2)对于任意的实数k,且a、b均不为0,证明:当ab>0时,y=f′(x)与y=g′(x)的图象有公共点;
(3)在(1)的条件下,设A(x1,y1),B(x2,y2),(x1<x2)是函数y=g(x)的图象上两点,g′(x0)=
y2-y1x2-x1
,证明:x1<x0<x2

查看答案和解析>>

同步练习册答案