精英家教网 > 高中数学 > 题目详情
14.在一次抽奖活动中,有甲、乙等6人获得抽奖的机会.抽奖规则如下:主办方先从6人中随机抽取两人均获奖1000元,再从余下的4人中随机抽取1人获奖600元,最后还从这4人中随机抽取1人获奖400元.
(1)求甲和乙都不获奖的概率;
(2)设X是甲获奖的金额,求X的分布列和数学期望.

分析 (1)设“甲和乙都不获奖”为事件A,由相互独立事件概率乘法公式能求出甲和乙都不获奖的概率.
(2)X的所有可能的取值为0,400,600,1000,分别求出相应的概率,由此能求出X的分布列和数学期望.

解答 (满分12分)
解:(1)设“甲和乙都不获奖”为事件A,…(1分)
则P(A)=$\frac{{C}_{4}^{2}}{{C}_{6}^{2}}•\frac{{C}_{2}^{1}}{{C}_{4}^{1}}•\frac{{C}_{2}^{1}}{{C}_{4}^{1}}$=$\frac{1}{10}$,
∴甲和乙都不获奖的概率为$\frac{1}{10}$.…(5分)
(2)X的所有可能的取值为0,400,600,1000,…(6分)
P(X=0)=$\frac{3}{8}$,
P(X=400)=$\frac{{C}_{5}^{2}}{{C}_{6}^{2}}$•$\frac{3}{4}•\frac{1}{4}$=$\frac{1}{8}$,
P(X=600)=$\frac{{C}_{5}^{2}}{{C}_{6}^{2}}•\frac{1}{4}•\frac{3}{4}$=$\frac{1}{8}$,
P(X=1000)=$\frac{{C}_{5}^{1}}{{C}_{6}^{2}}+\frac{{C}_{5}^{2}}{{C}_{6}^{2}}•\frac{1}{4}•\frac{1}{4}$=$\frac{3}{8}$,…(10分)
∴X的分布列为

X04006001000
P$\frac{3}{8}$$\frac{1}{8}$$\frac{1}{8}$$\frac{3}{8}$
(11分)
∴E(X)=$0×\frac{3}{8}+400×\frac{1}{8}+600×\frac{1}{8}+1000×\frac{3}{8}$=500.…(12分)

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,在历年高考中都是必考题型之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,设向量$\overrightarrow a=(1,2sinθ)$,$\overrightarrow b=(sin(θ+\frac{π}{3}),1)$,θ∈R.
(1)若$\overrightarrow a⊥\overrightarrow b$,求tanθ的值;
(2)若$\overrightarrow a$∥$\overrightarrow b$,且$θ∈(0,\frac{π}{2})$,求θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}的前n项和为Sn,若$\overrightarrow{OP}={a_{1007}}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+{a_{1008}}\overrightarrow{OC}$且P,A,B,C四点共面(该面不过点O),则S2014=(  )
A.503B.$\frac{1007}{2}$C.1006D.1007

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆锥的侧面积为15πcm2,底面半径为3cm,则圆锥的高是(  )
A.3cmB.4cmC.5cmD.8cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ln(x+1)-x(x>-1).
(1)求f(x)的单调区间;
(2)若k∈Z,且f(x-1)+x>k(1-$\frac{3}{x}$)对任意x>1恒成立,求k的最大值;
(3)对于在(0,1)中的任意一个常数a,是否存在正数x0,使得e${\;}^{f({x}_{0})}$<1-$\frac{a}{2}$x02成立?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,正方形ABCD所在平面与正方形ABB1A1所在的平面垂直,且AB等于1.设E、F分别为AB、BC上的动点,(不包括端点)
(1)若BE=BF.求证:平面BDB1⊥平面B1EF.
(2)设AE=BF=x,求异面直线A1E与B1F所成的角取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1=2,an=2an-1+2(n≥2),令bn=an+2.
(1)证明{bn}是等比数列;
(2)令cn=$\frac{{{log}_{2}b}_{n}}{{b}_{n}}$,Tn是数列{cn}的前n项和,若对任意的正数a,b,不等式5a2+4b2≥a(a+b)($\frac{3}{2}-T$n)2n恒成立,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知奇函数y=f(x)在定义域R上是单调减函数,且f(a+1)+f(2a)>0,则a的取值范围是(-∞,-$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B={0,2}.

查看答案和解析>>

同步练习册答案