精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图像过点,且在处取得极值.

(1)若对任意恒成立,求实数的取值范围;

(2)当,试讨论函数的零点个数.

【答案】(1)(2)见解析

【解析】

(1)根据已知得到ab的值,再求出函数的单调区间,再求f(x)的最大值,即得m的取值范围.(2)先求函数y的极值,再分类讨论函数的零点个数.

(1)∵点在函数f(x)图像上,

所以-3=aln1+b,所以b=-3.

所以当x∈时,,x∈时,.

所以函数在上为增函数,在为减函数.

因为

所以m≥-ln3-1,即实数m的取值范围为.

(2) 的定义域为,

.

所以

,.

x

1

+

0

-

0

+

y

极大

极小

,

∴当,,函数有3个零点

,,函数有2个零点.

,函数有1个零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数).

1)求曲线的直角坐标系方程和直线的普通方程;

2)点在曲线上,且到直线的距离为,求符合条件的点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥平面,且.

(1)取中点,求证:平面

(2)求直线所成角的余弦值.

(3)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成角,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为解决城市的拥堵问题,某城市准备对现有的一条穿城公路进行分流,已知穿城公路自西向东到达城市中心后转向方向,已知,现准备修建一条城市高架道路上设一出入口,在上设一出口,假设高架道路部分为直线段,且要求市中心的距离为.

1)若,求两站点之间的距离;

2)公路段上距离市中心处有一古建筑群,为保护古建筑群,设立一个以为圆心,为半径的圆形保护区.因考虑未来道路的扩建,则如何在古建筑群和市中心之间设计出入口,才能使高架道路及其延伸段不经过保护区?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别是,且离心率为,点为椭圆上的动点,面积最大值为.

1)求椭圆的标准方程;

2是椭圆上的动点,且直线经过定点,问在轴上是否存在定点,使得若存在,请求出定点,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为过点作与轴垂直的直线交椭圆于两点(点在第一象限),过椭圆的左顶点和上顶点的直线与直线交于且满足为坐标原点则该椭圆的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

(1)根据表中数据,建立关于的线性回归方程

(2)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据: ,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[4050),[5060),[6070),[7080),[8090),[90100]

1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;

2)从评分在[4060)的问卷者中,随机抽取2人,求此2人评分都在[5060)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求该函数的值域;

2)若对于任意恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案