【题目】已知函数的图像过点,且在处取得极值.
(1)若对任意有恒成立,求实数的取值范围;
(2)当,试讨论函数的零点个数.
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数).
(1)求曲线的直角坐标系方程和直线的普通方程;
(2)点在曲线上,且到直线的距离为,求符合条件的点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥,平面,,,且,,.
(1)取中点,求证:平面;
(2)求直线与所成角的余弦值.
(3)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成角,如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为解决城市的拥堵问题,某城市准备对现有的一条穿城公路进行分流,已知穿城公路自西向东到达城市中心后转向方向,已知,现准备修建一条城市高架道路,在上设一出入口,在上设一出口,假设高架道路在部分为直线段,且要求市中心与的距离为.
(1)若,求两站点之间的距离;
(2)公路段上距离市中心处有一古建筑群,为保护古建筑群,设立一个以为圆心,为半径的圆形保护区.因考虑未来道路的扩建,则如何在古建筑群和市中心之间设计出入口,才能使高架道路及其延伸段不经过保护区?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别是,且离心率为,点为椭圆上的动点,面积最大值为.
(1)求椭圆的标准方程;
(2)是椭圆上的动点,且直线经过定点,问在轴上是否存在定点,使得若存在,请求出定点,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,过点作与轴垂直的直线交椭圆于,两点(点在第一象限),过椭圆的左顶点和上顶点的直线与直线交于点,且满足,设为坐标原点,若,,则该椭圆的离心率为( )
A. B. C. 或 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区某农产品近几年的产量统计如表:
(1)根据表中数据,建立关于的线性回归方程;
(2)根据线性回归方程预测2019年该地区该农产品的年产量.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:,.(参考数据: ,计算结果保留小数点后两位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;
(2)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com