精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|-1<x<5},B={x|x2≥4},则∁R(A∪B)=(  )
A.(-2,-1)B.(2,5)C.(-2,-1]D.(-∞,2)∪[5,+∞)

分析 化简集合B,根据并集和补集的定义写出运算结果即可.

解答 解:集合A={x|-1<x<5},
B={x|x2≥4}={x|x≤-2或x≥2},
则A∪B={x|x≤-2或x>-1},
所以∁R(A∪B)={x|-2<x≤-1}=(-2,-1].
故选:C.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.某校高一、高二、高三年级学生共700人,其中高一年级300人,高二年级200人,高三年级200人,现采用分层抽样的方法抽取一个容量为35的样本,那么从高一年级抽取的人数应为15人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列各组函数中,表示同一函数的是(  )
A.y=$\sqrt{{x}^{2}}$和y=($\sqrt{x}$)2B.y=lg(x2-1)和y=lg(x+1)+lg(x-1)
C.y=logax2和y=2logaxD.y=x和y=logaax

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若函数f(x)满足对任意的两个不相等的正数x1,x2,下列三个式子:f(x1-x2)+f(x2-x1)=0,(x1-x2)(f(x1)-f(x2))<0,f($\frac{{x}_{1}+{x}_{2}}{2}$)>$\frac{f({x}_{1})+f({x}_{2})}{2}$都恒成立,则f(x)可能是(  )
A.f(x)=$\frac{1}{x}$B.f(x)=-x2C.f(x)=-tanxD.f(x)=|sinx|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.${({\sqrt{2}x-\frac{1}{x^2}})^3}$的展开式中常数项为(  )
A.-6B.-2C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数$f(x)=sin({\frac{π}{3}x+\frac{1}{3}})$的最小正周期为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.要得到函数$f(x)=sin2x+\sqrt{3}cos2x({x∈R})$的图象,可将y=2sin2x的图象向左平移(  )
A.$\frac{π}{6}$个单位B.$\frac{π}{3}$个单位C.$\frac{π}{4}$个单位D.$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出以下命题:
①若cos<$\overrightarrow{MN}$,$\overrightarrow{PQ}$>=-$\frac{1}{3}$,则异面直线MN与PQ所成角的余弦值为-$\frac{1}{3}$;
②若平面α与β的法向量分别是$\overrightarrow a=(2,4,-3)$与$\overrightarrow b=(-1,2,2)$,则平面α⊥β;
③已知A、B、C三点不共线,点O为平面ABC外任意一点,若点M满足$\overrightarrow{OM}=\frac{1}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}+\frac{2}{5}\overrightarrow{BC}$,则点M∈平面ABC;
④若向量$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$是空间的一个基底,则向量$\overrightarrow a+\overrightarrow b+\overrightarrow c$、$\overrightarrow a+\overrightarrow b$、$\overrightarrow c$也是空间的一个基底;
则其中正确的命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|log4x<$\frac{3}{2}$},B={6,7,8,9,10},则A∩B的子集个数是(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案