精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求函数的零点;

2)设函数的图象与函数的图象交于两点,求证:

3)若,且不等式对一切正实数x恒成立,求k的取值范围.

【答案】(1)x=1 (2)证明见解析 (3)

【解析】

1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;

2)转化思想,要证 ,即证 ,即证,构造函数进而求证;

3)不等式 对一切正实数恒成立,,设,分类讨论进而求解.

解:(1)令,所以

时,上单调递增;

时,单调递减;

所以,所以的零点为

2)由题意

要证 ,即证,即证

,则,由(1)知,当且仅当时等号成立,所以

,所以原不等式成立.

3)不等式 对一切正实数恒成立,

,△

①当△时,即时,恒成立,故单调递增.

于是当时,,又,故

时,,又,故

又当时,

因此,当时,

②当△,即时,设的两个不等实根分别为

,于是

故当时,,从而单调递减;

时,,此时,于是

舍去,

综上,的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,分别是线段的中点,,直线与平面所成的角等于

(Ⅰ)证明:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,平面,垂足为H,给出下面结论:

①直线与该正方体各棱所成角相等;

②直线与该正方体各面所成角相等;

③过直线的平面截该正方体所得截面为平行四边形;

④垂直于直线的平面截该正方体,所得截面可能为五边形,

其中正确结论的序号为(  )

A. ①③ B. ②④ C. ①②④ D. ①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,( 为参数, ),曲线的极坐标方程为.

(1)求曲线的直角坐标方程;

(2)设直线与曲线相交于 两点,当变化时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左、右焦点,以为直径的圆与双曲线在第一象限和第三象限的交点分别为,设四边形的周长为,面积为,且满足,则该双曲线的离心率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地有两个国家AAAA级景区—甲景区和乙景区.相关部门统计了这两个景区20191月至6月的客流量(单位:百人),得到如图所示的茎叶图.关于20191月至6月这两个景区的客流量,下列结论正确的是( )

A.甲景区客流量的中位数为13000

B.乙景区客流量的中位数为13000

C.甲景区客流量的平均值比乙景区客流量的平均值小

D.甲景区客流量的极差比乙景区客流量的极差大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的右焦点,点分别是轴,轴上的动点,且满足.若点满足为坐标原点).

(Ⅰ)求点的轨迹的方程;

(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交于点,试判断以线段为直径的圆是否经过点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.

(1)求关于的函数关系式;

(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过且垂直于轴的焦点弦的弦长为,过的直线交椭圆两点,且的周长为.

(1)求椭圆的方程;

(2)已知直线互相垂直,直线且与椭圆交于点两点,直线且与椭圆交于两点.求的值.

查看答案和解析>>

同步练习册答案