精英家教网 > 高中数学 > 题目详情
已知f(x)=|x-1|+|x+2|.
(1)解不等式f(x)≥5;
(2)若关于x的不等式f(x)>a2-2a对于任意的x∈R恒成立,求a的取值范围.
分析:(1)不等式即|x-1|+|x+2|≥5,由于|x-1|+|x+2|表示数轴上的x对应点到-2和1对应点的距离之和,而-3和2对应点到-2和1对应点的距离之和正好等于5,由此求得不等式的解集.
(2)若关于x的不等式f(x)>a2-2a对于任意的x∈R恒成立,故f(x)的最小值大于a2-2a.而由绝对值的意义可得f(x)的最小值为3,可得 3>a2-2a,由此解得a的范围.
解答:解:(1)不等式即|x-1|+|x+2|≥5,由于|x-1|+|x+2|表示数轴上的x对应点到-2和1对应点的距离之和,
而-3和2对应点到-2和1对应点的距离之和正好等于5,故不等式的解集为(-∞,-3]∪[2,+∞).
(2)若关于x的不等式f(x)>a2-2a对于任意的x∈R恒成立,故f(x)的最小值大于a2-2a.
而由绝对值的意义可得f(x)的最小值为3,
∴3>a2-2a,解得-1<a<3,
故所求的a的取值范围为(-1,3).
点评:本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的函数.设f (x)=x2+x、g(x)=x+2,若h (x)为f (x)、g(x)在R上生成的一个偶函数,且h(1)=3,则函数h (x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若k=
1
3
,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间[
1
2
,a]
上的值域为[
1
a
,1]
,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分别求f(x)、g(x)的定义域,并求f(x)•g(x)的值;(2)求f(x)的最小值并说明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在满足下列条件的正数t,使得对于任意的正
数x,a、b、c都可以成为某个三角形三边的长?若存在,则求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案