精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,.

(1)证明:

(2)若平面平面,求二面角的余弦值.

【答案】(1)详见解析(2)

【解析】

(1)取AB的中点O,连接OCOA1A1B,由已知可证OA1ABAB⊥平面OA1C,进而可得ABA1C

(2)易证OAOA1OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,求出平面平面BB1C1C的法向量,代入向量夹角公式,可得答案.

(1)取中点,连接,因为,所以

因为,故为等边三角形,所以

因为,所以平面;所以.

(2)由(1)可知,,又因为平面平面,交线为,所以平面,故两两垂直.以为坐标原点,建立空间直角坐标系如图,

因为,所以,所以.

是平面的法向量,则,解得,同理可得,平面的法向量

所以二面角余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加.下表是某购物网站2017年1-8月促销费用(万元)和产品销量(万件)的具体数据.

1)根据数据绘制的散点图能够看出可用线性回归模型拟合的关系请用相关系数加以说明;(系数精确到0.001

2)建立关于的回归方程(系数精确到0.01);如果该公司计划在9月份实现产品销量超6万件,预测至少需投入促销费用多少万元(结果精确到0.01.

参考数据 其中 分别为第个月的促销费用和产品销量 .

参考公式:(1)样本的相关系数

2)对于一组数据 其回归方程的斜率和截距的最小二乘估计分别为 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)R上的奇函数且当x>0f(x)=-x2+2x+2.

(1)f(x)的解析式

(2)画出f(x)的图像并指出f(x)的单调区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)当时,在给出的坐标系中,画出函数的大致图象,根据图象写出函数的单调减区间;

2)讨论关于的方程解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一张矩形白纸ABCD,AB=10,AD=,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同侧,下列命题正确的是____________(写出所有正确命题的序号)

①当平面ABE∥平面CDF时,AC∥平面BFDE

②当平面ABE∥平面CDF时,AE∥CD

③当A、C重合于点P时,PG⊥PD

④当A、C重合于点P时,三棱锥P-DEF的外接球的表面积为150

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二次函数在区间上有最大值4,最小值0.

1)求函数的解析式;

2)设,若时恒成立,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划在办公大厅建一面长为米的玻璃幕墙.先等距安装根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为米的玻璃造价为元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为元(总造价=立柱造价+玻璃造价).

(1)求关于的函数关系式;

(2)当时,怎样设计能使总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数,),为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)设,直线交曲线两点,是直线上的点,且,当最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的各项均为正数,且a1+2a2=5,4a=a2a6.

(1)求数列{an}的通项公式;

(2)若数列{bn}满足b1=2,且bn+1=bn+an,求数列{bn}的通项公式;

(3)设,求数列{cn}的前n项和Tn.

查看答案和解析>>

同步练习册答案