精英家教网 > 高中数学 > 题目详情
(2012•朝阳区一模)设函数f(x)=
eaxx2+1
,a∈R

(Ⅰ)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求函数f(x)单调区间.
分析:(I)先求导数f'(x),欲求出切线方程,只须求出其斜率即可,故先利用导数求出在x=0处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决.
(II)对字母a进行分类讨论,再令f'(x)大于0,解不等式,可得函数的单调增区间,令导数小于0,可得函数的单调减区间.
解答:解:因为f(x)=
eax
x2+1
,所以f′(x)=
eax(ax2-2x+a)
(x2+1)2

(Ⅰ)当a=1时,f(x)=
ex
x2+1
f′(x)=
ex(x2-2x+1)
(x2+1)2

所以f(0)=1,f'(0)=1.
所以曲线y=f(x)在点(0,f(0))处的切线方程为x-y+1=0.…(4分)
(Ⅱ)因为f′(x)=
eax(ax2-2x+a)
(x2+1)2
=
eax
(x2+1)2
(ax2-2x+a)
,…(5分)
(1)当a=0时,由f'(x)>0得x<0;由f'(x)<0得x>0.
所以函数f(x)在区间(-∞,0)单调递增,在区间(0,+∞)单调递减.…(6分)
(2)当a≠0时,设g(x)=ax2-2x+a,方程g(x)=ax2-2x+a=0的判别式△=4-4a2=4(1-a)(1+a),…(7分)
①当0<a<1时,此时△>0.
由f'(x)>0得x<
1-
1-a2
a
,或x>
1+
1-a2
a

由f'(x)<0得
1-
1-a2
a
<x<
1+
1-a2
a

所以函数f(x)单调递增区间是(-∞,
1-
1-a2
a
)
(
1+
1-a2
a
,+∞)

单调递减区间(
1-
1-a2
a
1+
1-a2
a
)
.…(9分)
②当a≥1时,此时△≤0.所以f'(x)≥0,
所以函数f(x)单调递增区间是(-∞,+∞).…(10分)
③当-1<a<0时,此时△>0.
由f'(x)>0得
1+
1-a2
a
<x<
1-
1-a2
a

由f'(x)<0得x<
1+
1-a2
a
,或x>
1-
1-a2
a

所以当-1<a<0时,函数f(x)单调递减区间是(-∞,
1+
1-a2
a
)
(
1-
1-a2
a
,+∞)

单调递增区间(
1+
1-a2
a
1-
1-a2
a
)
.…(12分)
④当a≤-1时,此时△≤0,f'(x)≤0,所以函数f(x)单调递减区间是(-∞,+∞).…(13分)
点评:本题以三次函数为载体,主要考查函数单调性的应用、利用导数研究曲线上某点切线方程、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•朝阳区一模)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.
(Ⅰ)下表是这次考试成绩的频数分布表,求正整数a,b的值;
区间 [75,80) [80,85) [85,90) [90,95) [95,100]
人数 50 a 350 300 b
(Ⅱ)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;
(Ⅲ)在(Ⅱ)中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象有两个不同的公共点,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)已知函数f(x)=
(
1
2
)
x
+
3
4
x≥2
log2x,0<x<2
若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是
3
4
,1)
3
4
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.
(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;
区间 [25,30) [30,35) [35,40) [40,45) [45,50]
人数 50 50 a 150 b
(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)复数
10i
1-2i
=(  )

查看答案和解析>>

同步练习册答案