精英家教网 > 高中数学 > 题目详情

【题目】时,若函数的图象与的图象有且只有一个交点,则正实数的取值范围是(

A.B.C.D.

【答案】B

【解析】

根据题意,由二次函数的性质分析可得为二次函数,在区间 为减函数,在区间为增函数,两种情况,结合图象分析两个函数的单调性与值域,即可得出正实数的取值范围.

解:当时,又因为为正实数,

函数的图象二次函数,

在区间 为减函数,在区间为增函数;

函数,是斜率为的一次函数.

最小值为,最大值为;

①当,,

函数在区间 为减函数,

在区间 为增函数,

的图象与的图象有且只有一个交点,

,

,解得,

所以

②当,,

函数在区间 为减函数,在区间为增函数,

在区间 为增函数,

的图象与的图象有且只有一个交点,

,

的图象与的图象有且只有一个交点

,

解得

综上所述:正实数的取值范围为.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市实施了机动车尾号限行,该市报社调查组为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:

年龄(岁)

[1525)

[2535)

[3545)

[4555)

[5565)

[6575]

频数

5

10

15

10

5

5

赞成人数

4

6

9

6

3

4

(Ⅰ)请估计该市公众对“车辆限行”的赞成率和被调查者的年龄平均值;

)若从年龄在[1525)[2535)的被调查者中各随机选取两人进行追踪调查,记被选4人中不赞成“车辆限行”的人数为,求随机变量的分布列和数学期望;

若在这50名被调查者中随机发出20份的调查问卷,记为所发到的20人中赞成“车辆限行”的人数,求使概率取得最大值的整数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司准备上市一款新型轿车零配件,上市之前拟在其一个下属4S店进行连续30天的试销.定价为1000/.试销结束后统计得到该4S店这30天内的日销售量(单位:件)的数据如下表:

日销售量

40

60

80

100

频数

9

12

6

3

1)若该4S店试销期间每个零件的进价为650/件,求试销连续30天中该零件日销售总利润不低于24500元的频率;

2)试销结束后,这款零件正式上市,每个定价仍为1000元,但生产公司对该款零件不零售,只提供零件的整箱批发,大箱每箱有60件,批发价为550/件;小箱每箱有45件,批发价为600/.4S店决定每天批发两箱,根据公司规定,当天没销售出的零件按批发价的9折转给该公司的另一下属4S.假设该4店试销后的连续30天的日销售量(单位:件)的数据如下表:

日销售量

50

70

90

110

频数

5

15

8

2

(ⅰ)设该4S店试销结束后连续30天每天批发两大箱,这30天这款零件的总利润;

(ⅱ)以总利润作为决策依据,该4S店试销结束后连续30天每天应该批发两大箱还是两小箱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长为3的线段的两端点分别在轴和轴上移动,.

1)求点的轨迹的方程.

2)过作互相垂直的两条直线分别与轨迹交于,设中点为中点为,试探究直线是否过定点?若是,求出该定点;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2cosxsinx+2φ)为偶函数,其中φ∈(0),则下列关于函数gx)=sin2x+φ)的描述正确的是(

A.gx)在区间[]上的最小值为﹣1

B.gx)的图象可由函数fx)的图象向上平移一个单位,再向右平移个单位长度得到

C.gx)的图象的一个对称中心为(0

D.gx)的一个单调递增区间为[0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

1)当时,求曲线在点处的切线方程;

2)若函数存在最小值,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,底面分别是棱的中点,对于平面截四棱锥所得的截面多边形,有以下三个结论:

①截面的面积等于

②截面是一个五边形;

③截面只与四棱锥四条侧棱中的三条相交.

其中,所有正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过点且不过点的直线与椭圆交于两点,直线与直线交于点

(Ⅰ)若垂直于轴,求直线的斜率;

(Ⅱ)试判断直线与直线的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠病毒是一种通过飞沫和接触传播的变异病毒,为筛查该病毒,有一种检验方式是检验血液样本相关指标是否为阳性,对于份血液样本,有以下两种检验方式:一是逐份检验,则需检验次.二是混合检验,将其中份血液样本分别取样混合在一起,若检验结果为阴性,那么这份血液全为阴性,因而检验一次就够了;如果检验结果为阳性,为了明确这份血液究竟哪些为阳性,就需要对它们再逐份检验,此时份血液检验的次数总共为次.某定点医院现取得4份血液样本,考虑以下三种检验方案:方案一,逐个检验;方案二,平均分成两组检验;方案三,四个样本混在一起检验.假设在接受检验的血液样本中,每份样本检验结果是阳性还是阴性都是相互独立的,且每份样本是阴性的概率为

(Ⅰ)求把2份血液样本混合检验结果为阳性的概率;

(Ⅱ)若检验次数的期望值越小,则方案越“优”.方案一、二、三中哪个最“优”?请说明理由.

查看答案和解析>>

同步练习册答案