精英家教网 > 高中数学 > 题目详情

【题目】设向量 =(cosθ,sinθ), =(﹣ );
(1)若 ,且θ∈(0,π),求θ;
(2)若|3 + |=| ﹣3 |,求| + |的值.

【答案】
(1)解:∵ =(cosθ,sinθ), =(﹣ ),

∴﹣ sinθ= cosθ,

∴sin(θ+ )=0,θ∈(0,π),

∴θ=


(2)解:若|3 + |=| ﹣3 |,

+ = +

整理得: sinθ﹣cosθ=0,

| + |= = =


【解析】(1),根据向量平行,得到sin(θ+ )=0,结合θ的范围,求出即可;(2)根据向量的运算得到 sinθ﹣cosθ=0,求出| + |的值即可.
【考点精析】通过灵活运用平面向量的坐标运算,掌握坐标运算:设;;设,则即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=lnx﹣ax2+x有两个零点,则实数a的取值范围是(
A.(0,1)
B.(﹣∞,1)
C.(﹣∞,
D.(0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设的顶点分别为,圆的外接圆,直线的方程是.

(1)求圆的方程;

(2)证明:直线与圆相交;

(3)若直线被圆截得的弦长为3,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列{an}满足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 则称{an}具有性质P.
(1)若{an}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3
(2)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c5=1;b5=c1=81,an=bn+cn , 判断{an}是否具有性质P,并说明理由;
(3)设{bn}是无穷数列,已知an+1=bn+sinan(n∈N*),求证:“对任意a1 , {an}都具有性质P”的充要条件为“{bn}是常数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列
(1)在等差数列{an}中,a6=10,S5=5,求该数列的第8项a8
(2)在等比数列{bn}中,b1+b3=10,b4+b6= ,求该数列的前5项和S5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,时取得极值.

(1)求f(x)的单调区间;

(2)求证:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的函数 满足 ,其导函数 满足 ,则下列结论中一定错误的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过直线x﹣y﹣1=0与直线2x+y﹣5=0的交点P.

(1)若l与直线x+3y﹣1=0垂直,求l的方程;

(2)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆为坐标原点,动点在圆外,过点作圆的切线,设切点为.

(1)若点运动到处,求此时切线的方程;

(2)求满足的点的轨迹方程.

查看答案和解析>>

同步练习册答案