精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+bx为偶函数,数列{an}满足an+12f(an-1)+1,且a1=3,an>1.

(1)设bn=log2(an-1),证明:数列{bn+1}为等比数列;

(2)设cn=nbn,求数列{cn}的前n项和Sn.

【答案】见解析

【解析】

(1)证明:∵函数f(x)=x2+bx为偶函数,

∴b=0,

∴f(x)=x2

∴an+1=2(an-1)2+1,

∴an+1-1=2(an-1)2

=2.

∵a1=3,

∴b1=log22=1,

∴bn+1=2n.

即bn=2n-1,

∴数列{bn+1}是以2为首项,以2为公比的等比数列.

(2)解:由题意得cn=n2n-n.

设An=1×2+2×22+3×23+…+n×2n

设Bn=1+2+3+4+…+n=

∴2An=1×22+2×23+3×24+…+n×2n+1.

∴-An=2+22+23+…+2n-n×2n+1-n×2n+1=2n+1-n×2n+1-2,

∴An=(n-1)2n+1+2.

∴Sn=An-Bn=(n-1)2n+1+2-.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】倾斜角为的直线过点P(8,2),直线和曲线C:为参数)交于不同的两点M1、M2.

(1)将曲线C的参数方程化为普通方程,并写出直线的参数方程;

(2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

I)求函数的单调区间;

II)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?

III)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=,x[1,+∞).

(1)当a=时,判断并证明f(x)的单调性;

(2)当a=-1时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数处取最小值.

(1)的值并化简

(2)ABC中分别是角AB C的对边已知,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知, .

(1)当时, 为增函数,求实数的取值范围;

(2)设函数,若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=

(1)求证:平面EBC⊥平面EBD;

(2)设M为线段EC上一点,且3EM=EC,试问在线段BC上是否存在一点T,使得MT∥平面BDE,若存在,试指出点T的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.

(1)若AP⊥AQ,证明:直线PQ过定点,并求出定点的坐标;

(2)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,底面是矩形,且,若的中点,且

)求证: 平面

)线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案