精英家教网 > 高中数学 > 题目详情

【题目】已知一个正四面体纸盒的俯视图如图所示,其中四边形ABCD是边长为的正方形,若在该正四面体纸盒内放一个正方体,使正方体可以在纸盒内任意转动,则正方体棱长的最大值是_____.

【答案】

【解析】

由一个正四面体纸盒的俯视图如图所示,其中四边形ABCD是边长为的正方形,

则正四面体的棱长,设此球的一个内接正方体的棱长为a,则,即可得答案.

由一个正四面体纸盒的俯视图如图所示,其中四边形ABCD是边长为的正方形,

则正四面体的棱长.

先求出此正四面体的内切球,再求出此球的一个内接正方体即可.

设此正四面体的应该内切球的半径为r,则4r S底面hS底面.

r.

AO⊥底面BCD,垂足为O点,O为底面正三角形的中心.

AO2,∴r

设此球的一个内接正方体的棱长为a,则,解得.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 分别是的中点.

(1)求证: 平面

(2)若三棱柱的体积为4,求异面直线夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,为正三角形.,且与底面所成角的正切值为.

1)证明:平面平面

2是线段上一点,记,是否存在实数,使二面角的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱锥中,点在以为直径的圆上,平面平面,点在线段上,且,点的重心,点的中点.

(1)求证:平面

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)

经常网购

偶尔或不用网购

合计

男性

50

100

女性

70

100

合计

(1)完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?

(2)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;

②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为,求随机变量的数学期望和方差.

参考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体中,均垂直于平面的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数处的切线方程;

2)若对任意的,都有恒成立,求a的取值范围;

3)函数的图像上是否存在两点,使得直线AB的斜率k满足:?若存在,求出之间的关系;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过两点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过椭圆的右焦点的直线交椭圆两点,且直线与以线段为直径的圆交于另一点(异于点),若,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20173月郑州市被国务院确定为全国46个生活垃圾分类处理试点城市之一,此后由郑州市城市管理局起草公开征求意见,经专家论证,多次组织修改完善,数易其稿,最终形成《郑州市城市生活垃圾分类管理办法》(以下简称《办法》).《办法》已于2019926日被郑州市人民政府第35次常务会议审议通过,并于2019121日开始施行.《办法》中将郑州市生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾4类.为了获悉高中学生对垃圾分类的了解情况,某中学设计了一份调查问卷,500名学生参加测试,从中随机抽取了100名学生问卷,记录他们的分数,将数据分成7组:,并整理得到如下频率分布直方图:

1)从总体的500名学生中随机抽取一人,估计其分数不低于60的概率;

2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间内的学生人数,

3)学校环保志愿者协会决定组织同学们利用课余时间分批参加垃圾分类,我在实践活动,以增强学生的环保意识.首次活动从样本中问卷成绩低于40分的学生中随机抽取2人参加,已知样本中分数小于405名学生中,男生3人,女生2人,求抽取的2人中男女同学各1人的概率是多少?

查看答案和解析>>

同步练习册答案