8£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=-2+sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}5x=1-4t\\ 5y=18+3t\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨1£©ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬°ÑÇúÏßC1µÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÉèµãPΪÇúÏßC2ÉϵĶ¯µã£¬¹ýµãP×÷ÇúÏßC1µÄÁ½ÌõÇÐÏߣ¬ÇóÕâÁ½ÌõÇÐÏßËù³É½ÇµÄÓàÏÒÖµµÄÈ¡Öµ·¶Î§£®

·ÖÎö £¨1£©Ê×ÏÈ°ÑÇúÏßC1µÄ²ÎÊý·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬ÔÙת»¯³É¼«×ø±ê·½³Ì£®
£¨2£©Çó³ö¹ýµãP×÷ÇúÏßC1µÄÁ½ÌõÇÐÏߣ¬ÇÐÏß³¤l¡Ý$\sqrt{15}$£¬¼´¿ÉÇóÕâÁ½ÌõÇÐÏßËù³É½ÇµÄÓàÏÒÖµµÄÈ¡Öµ·¶Î§£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=-2+sin¦Á}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£º£¨x-1£©2+£¨y+2£©2=1£®
¸ù¾Ýx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬´úÈëÖ±½Ç×ø±ê·½³Ìת»¯Îª£º¦Ñ2-2¦Ñcos¦È+4¦Ñsin¦È+4=0£®
£¨2£©£¨x-1£©2+£¨y+2£©2=1µÄÔ²ÐÄ×ø±êΪ£¨1£¬-2£©£¬°ë¾¶Îª1£¬
ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}5x=1-4t\\ 5y=18+3t\end{array}\right.$£¬ÆÕͨ·½³ÌΪ3x+4y-15=0£¬
¡àÔ²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|3-8-15|}{5}$=4£¬
¡à¹ýµãP×÷ÇúÏßC1µÄÁ½ÌõÇÐÏߣ¬ÇÐÏß³¤l¡Ý$\sqrt{15}$£¬
ÉèÁ½ÌõÇÐÏßËù³É½ÇΪ2¦Á£¬Ôòcos¦Á¡Ý$\frac{\sqrt{15}}{4}$£¬
¡àcos2¦Á¡Ý$\frac{7}{8}$£¬
¡àÕâÁ½ÌõÇÐÏßËù³É½ÇµÄÓàÏÒÖµµÄÈ¡Öµ·¶Î§ÊÇ[0£¬arccos$\frac{7}{8}$]£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º²ÎÊý·½³ÌÓ뼫×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬Ö±½Ç×ø±êÓ뼫×ø±êÖ®¼äµÄ»¥»¯£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®£¨ÊµÑé°à×ö£©Ä³Êй涨ÖÐѧÉú°ÙÃ׳ɼ¨´ï±ê±ê׼Ϊ²»³¬¹ý16Ã룮ÏÖ´Ó¸ÃÊÐÖÐѧÉúÖа´ÕÕÄС¢Å®Éú±ÈÀýËæ»ú³éÈ¡ÁË50ÈË£¬ÆäÖÐÓÐ30ÈË´ï±ê£®½«´ËÑù±¾µÄƵÂʹÀ¼ÆΪ×ÜÌåµÄ¸ÅÂÊ£®
Èç¹ûÄС¢Å®Éú²ÉÓÃÏàͬµÄ´ï±ê±ê×¼£¬ÄС¢Å®Éú´ï±êÇé¿öÈçÏÂ±í£º
ÄÐÅ®×ܼÆ
´ï±êa=24 b=630
²»´ï±êc=d=1220
×ܼÆ3218n=50
£¨1£©¸ù¾Ý±íÖÐËù¸øµÄÊý¾Ý£¬Íê³É2¡Á2ÁÐÁª±í£¬²¢ÅжÏÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄÇ°ÌáÏÂÄÜ·ñÈÏΪ¡°ÌåÓý´ï±êÓëÐÔ±ðÓйء±£¿ÈôÓУ¬ÄãÄÜ·ñ¸ø³öÒ»¸ö¸üºÏÀíµÄ´ï±ê·½°¸£¿
¸½£ºk2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
P£¨K2¡Ýk0£©0.0250.010.0050.001
k05.0246.6357.87910.828
£¨2£©Ëæ»úµ÷²é45ÃûѧÉú£¬Éè¦ÎΪ´ï±êÈËÊý£¬Çó¦ÎµÄÊýѧÆÚÍûÓë·½²î£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªx¡ÊR£¬y¡ÊR£¬ÄÇô²»µÈʽ×é$\left\{\begin{array}{l}y¡Ü2x\\ y¡Ý-2x\\ x¡Ü3\end{array}\right.$±íʾµÄƽÃæÇøÓòµÄÃæ»ýÊÇ18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÆ溯Êýf£¨x£©ÊÇ[0£¬2]Éϵļõº¯Êý£¬Èôf£¨2a+1£©+f£¨4a-3£©£¾0£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª¼«×ø±êϵµÄ¼«µãÔÚƽÃæÖ±½Ç×ø±êϵµÄÔ­µã´¦£¬¼«ÖáÓëxÖáµÄ·Ç¸º°ëÖáÖغϣ¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È+2sin¦È£¬Ö±ÏßlµÄ²Î¿¼·½³ÌΪ$\left\{\begin{array}{l}{x=10+3t}\\{y=4t}\end{array}\right.$£®
£¨1£©°ÑÔ²CµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬²¢ÇóÔ²ÐÄCµÄ¼«×ø±ê£»
£¨2£©ÊÔÇóÔ²CÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®µãPÊÇÅ×ÎïÏß$\left\{\begin{array}{l}{x=2t}\\{y=2{t}^{2}}\end{array}\right.$£¨tΪ²ÎÊý£©ÉÏÈÎÒ»µã£¬QÊÇÍÖÔ²$\left\{\begin{array}{l}{x=cos¦È}\\{y=-3+2sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£¬0¡Ü¦È£¼2¦Ð£©ÉÏÈÎÒ»µã£¬Ôò|PQ|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®1B£®5C£®2D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=x3+ax2+1-a£¨a¡ÊR£©£®
£¨1£©ÊÔÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©µ±º¯Êýf£¨x£©ÓÐÈý¸ö²»Í¬µÄÁãµãʱ£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®»¯¼ò£º
£¨1£©£¨a${\;}^{\frac{1}{2}}$+a${\;}^{\frac{1}{2}}$£©£¨a${\;}^{\frac{1}{2}}$-a${\;}^{\frac{1}{2}}$£©
£¨2£©$\frac{a£¨{a}^{\frac{1}{2}}+{b}^{\frac{1}{2}}£©£¨{a}^{\frac{1}{2}}-{b}^{\frac{1}{2}}£©}{{a}^{\frac{1}{3}}£¨{a}^{\frac{1}{3}}+{b}^{\frac{1}{3}}£©+{b}^{\frac{2}{3}}}$£¨a£¾0£¬b£¾0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªtanx=2£¬Ôòtan2x=$-\frac{4}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸