精英家教网 > 高中数学 > 题目详情

【题目】已知函数自然对数的底数)有两个零点.

1)求实数的取值范围;

2)若的两个零点分别为,证明:.

【答案】1.2)证明见解析

【解析】

1)将有两个零点问题,转化为有两个零点,利用研究的单调性和零点,由此求得的取值范围.

2)将所要证明的不等式转化为证明,构造函数,利用证得,由此证得不等式成立.

1有两个零点,等价于有两个零点,令,则时恒成立,所以时单调递增,

所以有两个零点,等价于有两个零点.

因为所以

①当时,单调递增,不可能有两个零点;

②当时,令,得单调递增;令,得单调递减.

所以.

,得,此时恒成立,没有零点;

,得,此时有一个零点;

,得,因为,且,所以上各存在一个零点,符合题意.

综上,当时,函数有两个零点,

即若函数有两个零点,则的取值范围为.

2)要证,只需证,即证

由(1)知,所以只需证.

因为,所以

所以,只需证.

,令,则,所以只需证,即证.

,则.

即当时,成立.

所以,即

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在极坐标系中,方程C:表示的曲线被称作四叶玫瑰线”(如图)

1)求以极点为圆心的单位圆与四叶玫瑰线交点的极坐标和直角坐标;

2)直角坐标系的原点与极点重合,x轴正半轴与极轴重合.求直线l:上的点M与四叶攻瑰线上的点N的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,焦距为.

(1)求的方程;

(2)若斜率为的直线与椭圆交于两点(点均在第一象限),为坐标原点.

①证明:直线的斜率依次成等比数列.

②若关于轴对称,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年7月1日迎来了我国建党98周年,6名老党员在这天相约来到革命圣地之一的西柏坡.6名老党员中有3名党员当年在同一个班,他们站成一排拍照留念时,要求同班的3名党员站在一起,且满足条件的每种排法都要拍一张照片,若将照片洗出来,每张照片0.5元(不含过塑费),且有一半的照片需要过塑,每张过塑费为0.75元.若将这些照片平均分给每名老党员(过塑的照片也要平均分),则每名老党员需要支付的照片费为( )

A.20.5B.21元C.21.5元D.22元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为彻底打赢脱贫攻坚战,2020年春,某市政府投入资金帮扶某农户种植蔬菜大棚脱贫致富,若该农户计划种植冬瓜和茄子,总面积不超过15亩,帮扶资金不超过4万元,冬瓜每亩产量10 000斤,成本2000元,每斤售价0.5元,茄子每亩产量5000斤,成本3000元,每斤售价1.4元,则该农户种植冬瓜和茄子利润的最大值为(

A.4万元B.5.5万元C.6.5万元D.10万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某度假酒店为了解会员对酒店的满意度,从中抽取50名会员进行调查,把会员对酒店的“住宿满意度”与“餐饮满意度”都分为五个评分标准:1分(很不满意);2分(不满意);3分(一般);4分(满意);5分(很满意).其统计结果如下表(住宿满意度为,餐饮满意度为

(1)求“住宿满意度”分数的平均数;

(2)求“住宿满意度”为3分时的5个“餐饮满意度”人数的方差;

(3)为提高对酒店的满意度,现从的会员中随机抽取2人征求意见,求至少有1人的“住宿满意度”为2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.

1)讨论上的单调性;

2)令,试证明上有且仅有三个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一场突如其来的新冠肺炎疫情在全国蔓延,在党中央的坚强领导和统一指挥下,全国人民众志成城、团结一心,共抗疫情。每天测量体温也就成为了所有人的一项责任,一般认为成年人腋下温度(单位:℃)平均在36℃~37℃之间即为正常体温,超过37.1℃即为发热。发热状态下,不同体温可分成以下三种发热类型:低热:;高热:;超高热(有生命危险):.

某位患者因发热,虽排除肺炎,但也于12日至26日住院治疗. 医生根据病情变化,从14日开始,以3天为一个疗程,分别用三种不同的抗生素为该患者进行消炎退热. 住院期间,患者每天上午8:00服药,护士每天下午16:00为患者测量腋下体温记录如下:

抗生素使用情况

没有使用

使用“抗生素A”治疗

使用“抗生素B”治疗

日期

12

13

14

15

16

17

18

19

体温(℃)

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情况

使用“抗生素C”治疗

没有使用

日期

20

21

22

23

24

25

26

体温(℃)

38.4

38.0

37.6

37.1

36.8

36.6

36.3

1)请你计算住院期间该患者体温不低于39℃的各天体温平均值;

2)在18日—22日期间,医生会随机选取3天在测量体温的同时为该患者进行某一特殊项目“项目”的检查,求至少两天在高热体温下做“项目”检查的概率;

3)抗生素治疗一般在服药后2-8个小时就能出现血液浓度的高峰,开始杀灭细菌,达到消炎退热效果.假设三种抗生素治疗效果相互独立,请依据表中数据,判断哪种抗生素治疗效果最佳,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四面体PABC的棱长均为aO为正四面体PABC的外接球的球心,过点O作平行于底面ABC的平面截正四面体PABC,得到三棱锥PA1B1C1和三棱台ABCA1B1C1,那么三棱锥PA1B1C1的外接球的表面积为________.

查看答案和解析>>

同步练习册答案