精英家教网 > 高中数学 > 题目详情
5.2016年年底,某商业集团根据相关评分标准,对所属20家商业连锁店进行了年度考核评估,并依据考核评估得分(最低分60分,最高分100分)将这些连锁店分别评定为A,B,C,D四个类型,其考核评估标准如表:
评估得分[60,70)[70,80)[80,90)[90,100]
评分类型DCBA
考核评估后,对各连锁店的评估分数进行统计分析,得其频率分布直方图如下:
(Ⅰ)评分类型为A的商业连锁店有多少家;
(Ⅱ)现从评分类型为A,D的所有商业连锁店中随机抽取两家做分析,求这两家来自同一评分类型的概率.

分析 (Ⅰ)先求出评分类型为A的商业连锁店所占的频率,由此能求出评分类型为A的商业连锁店共有多少家.
(Ⅱ)依题意评分类型为D的商业连锁店有3家,设评分类型为A的4商业连锁店为a1,a2,a3,a4,评分类型为D的3商业连锁店为b1,b2,b3,由此利用列举法能求出这两家来自同一评分类型的概率.

解答 (本小题满分13分)
解:(Ⅰ)评分类型为A的商业连锁店所占的频率为0.020×10=0.2,
所以评分类型为A的商业连锁店共有0.2×20=4家;….(4分)
(Ⅱ)依题意评分类型为D的商业连锁店有3家,
设评分类型为A的4商业连锁店为a1,a2,a3,a4
评分类型为D的3商业连锁店为b1,b2,b3,….(6分)
从评分类型为A,D的所有商业连锁店中随机抽取两家的所有可能情况有:
(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a1,b3),
(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a2,b3),(a3,a4),
(a3,b1),(a3,b2),(a3,b3),(a4,b1),(a4,b2),(a4,b3),
(b1,b2),(b1,b3),(b2,b3)共21种,….(10分)
其中满足条件的共有9种,….(12分)
所以这两家来自同一评分类型的概率为$\frac{9}{21}=\frac{3}{7}$.….(13分)

点评 本题考查频率分布列的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1:x+y=4,曲线${C_2}:\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.(θ$为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1,C2的极坐标方程;
(2)若射线l:θ=α(p>0)分别交C1,C2于A,B两点,求$\frac{{|{OB}|}}{{|{OA}|}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设Sn为等差数列{an}的前n项的和a1=1,$\frac{{{S_{2017}}}}{2017}-\frac{{{S_{2015}}}}{2015}=1$,则数列$\left\{{\frac{1}{S_n}}\right\}$的前2017项和为(  )
A.$\frac{2017}{1009}$B.$\frac{2017}{2018}$C.$\frac{1}{2017}$D.$\frac{1}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆O:x2+y2=16上任意一点P,过P作x轴的垂线段PA,A为垂足,当点P在圆上运动时,线段PA的中点M的轨迹记为曲线C,则曲线C的离心率为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=ekx-1(k∈R).
(Ⅰ)当k=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)设函数F(x)=f(x)+x2-kx,证明:当x∈(0,+∞)时,F(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C过点$A(\frac{3}{4},\;0)$,且与直线$l:\;x=-\frac{3}{4}$相切,
(I)求圆心C的轨迹方程;
(II) O为原点,圆心C的轨迹上两点M、N(不同于点O)满足$\overrightarrow{OM}•\overrightarrow{ON}=0$,已知$\overrightarrow{OP}=\frac{1}{3}\overrightarrow{OM}$,$\overrightarrow{OQ}=\frac{1}{3}\overrightarrow{ON}$,证明直线PQ过定点,并求出该定点坐标和△APQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知全集为R,集合A={x|$\frac{x-3}{x+1}$≤0},集合B={x||2x+1|>3}.求A∩(∁RB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-m|$\overrightarrow{a}$+$\overrightarrow{b}$|+1,x∈[-$\frac{π}{3}$,$\frac{π}{4}$],m∈R.
(1)当m=0时,求f($\frac{π}{6}$)的值;
(2)若f(x)的最小值为-1,求实数m的值;
(3)是否存在实数m,使函数g(x)=f(x)+$\frac{24}{49}$m2,x∈[-$\frac{π}{3}$,$\frac{π}{4}$]有四个不同的零点?若存在,求出m的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.对任意实数a,b,定义运算“⊕”:$a⊕b=\left\{\begin{array}{l}b,a-b≥1\\ a,a-b<1\end{array}\right.$,设f(x)=(x2-1)⊕(4+x),若函数y=f(x)-k有三个不同零点,则实数k的取值范围是(  )
A.(-1,2]B.[0,1]C.[-1,3)D.[-1,1)

查看答案和解析>>

同步练习册答案