精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,设当箭头a指向①处时,输出的S的值为m,当箭头a指向②处时,输出的S的值为n,则m+n=

【答案】14
【解析】解:当箭头指向①时,计算S和i如下:
i=1,S=0,S=1;
i=2,S=0,S=2;
i=3,S=0,S=3;
i=4,S=0,S=4;
i=5,结束.
∴S=m=4.
当箭头指向②时,计算S和i如下:
i=1,S=0,S=1;
i=2,S=3;
i=3,S=6;
i=4,S=10;
i=5,结束.
∴S=n=10.
∴m+n=14,
所以答案是:14.

【考点精析】掌握程序框图是解答本题的根本,需要知道程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知某公司生产一种品牌服装的年固定成本为10万元,且每生产1万件,需要另投入1.9万元.R(x)(单位:万元)为销售收入,根据市场调查知R(x)= 其中x(单位:万件)是年产量.

(1)写出年利润W(单位:万元)关于年产量x的函数解析式.

(2)当年产量为多少时,该公司在这一品牌服装的生产中所获年利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列语句中是命题的有________,其中是真命题的有_____(填序号).

①“垂直于同一条直线的两个平面必平行吗?”②“一个数不是正数就是负数”;③“在一个三角形中,大角所对的边大于小角所对的边”;④“x+y为有理数,x,y都是有理数”;⑤作一个三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,若一天中从甲地去乙地的旅客人数不超过900的概率为p0,p0的值为 ( )

A. 0.954 4 B. 0.682 6 C. 0.997 4 D. 0.977 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取500,测量这些产品的一项质量指标值,由测量结果得如图所示的频率分布直方图.

(1)求这500件产品质量指标值的样本平均数和样本方差s2(同一组中的数据用该组区间的中点值作代表).

(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.

利用该正态分布,P(187.8<Z<212.2);

某用户从该企业购买了100件这种产品,X表示这100件产品中质量指标值位于区间(187.8,212.2)上的产品件数,利用的结果,E(X).

:≈12.2.

Z~N(μ,σ2),P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.

(1)若f(x)在x=3处取得极值,求常数a的值;

(2)若f(x)在(-∞,0)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ ax2﹣2x,其中a≤0.
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,求a﹣2b的值;
(2)讨论函数f(x)的单调性;
(3)设函数g(x)=x2﹣3x+3,如果对于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C所对边的边长,且C=,a+b=λc(其中λ>1).

(1)若λ=时,证明:△ABC为直角三角形;

(2)若·λ2,且c=3,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为数列{an}的前n项和,已知a1≠0,2an﹣a1=S1Sn , n∈N*
(1)求a1a2 , 并求数列{an}的通项公式,
(2)求数列{nan}的前n项和Tn

查看答案和解析>>

同步练习册答案