精英家教网 > 高中数学 > 题目详情
若α是锐角,且满足sin(α-
π
6
)=
1
3
,则cosα的值为(  )
A、
2
6
+1
6
B、
2
6
-1
6
C、
2
3
+1
4
D、
2
3
-1
4
分析:先根据α是锐角,且满足sin(α-
π
6
)=
1
3
求出cos(α-
π
6
)
的值,再由cosα=cos[(α-
π
6
)+
π
6
]
根据两角和与差的余弦公式得到最后答案.
解答:解:由α是锐角,且sin(α-
π
6
)=
1
3
可得cos(α-
π
6
)=
2
2
3
cosα=cos[(α-
π
6
)+
π
6
]=cos(α-
π
6
)cos
π
6
-sin(α-
π
6
)sin
π
6
=
2
6
-1
6

故选B.
点评:本题主要考查两角和与差的余弦公式、同角三角函数的基本关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,下列命题中正确的有:
③⑤
③⑤

AB
-
AC
=
BC
;                
②若
AC
AB
>0
,则△ABC为锐角三角形;
③O是△ABC所在平面内一定点,动点P满足
OP
=
0A
+λ(
AB
+
AC
)
,λ∈[0,+∞),则动点P一定过△ABC的重心;
④O是△ABC内一定点,且
OA
+
OC
+2
OB
=
0
,则
S△AOC
S△ABC
=
1
3

⑤若(
AB
AB
+
AC
AC
)•
BC
=0,且
AB
AB
AC
AC
=
1
2
,则△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,给出如下命题:
①若
AC
AB
>0
,则△ABC为锐角三角形;
②O是△ABC所在平面内一定点,且满足
OA
OB
=
OB
OC
=
OC
OA
,则O是△ABC的垂心;
③O是△ABC所在平面内一定点,动点P满足
OP
=
OA
+λ(
AB
+
AC
),λ∈[0,+∞)
,则动点P一定过△ABC的重心;
④O是△ABC内一定点,且
OA
+
OB
+
OC
=
0
,则
S△AOC
S△ABC
=
1
3

⑤若(
AB
|
AB
|
+
AC
|
AC
|
)•
BC
=0
,且
AB
|
AB
|
AC
|
AC
|
=
1
2
,则△ABC为等腰直角三角形.
其中正确的命题为
②③④
②③④
(将所有正确命题的序号都填上).

查看答案和解析>>

同步练习册答案