精英家教网 > 高中数学 > 题目详情
把数列{2n+1}(n∈N*)依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,第六个括号两个数,…循环分别为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43)(45,47)…则第104个括号内各数之和为(  )
A、2036B、2048C、2060D、2072
分析:括号中的数字个数,依次为1、2、3、4,每四个循环一次,具有周期性,第一百零四个括号是一个周期的最后一个,括号中有四个数,这是第二十六次循环,最后一个数是2×260+1,得出结论.
解答:解:由题意知
104
4
=26

∴第104个括号中最后一个数字是2×260+1,
∴2×257+1+2×258+1+2×259+1+2×260+1=2072,
故选D
点评:复习课的任务在于对知识的深化,对能力的提高、关键在落实.根据上面所研究的问题,进一步提高运用函数的思想、方程的思想解决数列问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

把数列{2n+1}(n∈N*),依次按第1个括号一个数,第2个括号两个数,第3个括号三个数,第4个括号四个数,第5个括号一个数,…,循环为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,则2013是第
403
403
个括号内的数.

查看答案和解析>>

科目:高中数学 来源: 题型:

把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

把数列{2n+1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,第六个括号两个数,…,循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),…,则第104个括号内各数字之和为
2072
2072

查看答案和解析>>

科目:高中数学 来源: 题型:

把数列{2n+1}(n∈N*),依次按第1个括号一个数,第2个括号两个数,第3个括号三个数,第4个括号四个数,第5个括号一个数,…,循环为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,则第104个括号内各数之和为
2072
2072

查看答案和解析>>

同步练习册答案