精英家教网 > 高中数学 > 题目详情
抛物线的焦点为,点为抛物线上的动点,点为其准线上的动点,当为等边三角形时,其面积为
A.B.4C.6D.
D  

试题分析:据题意知,△PMF为等边三角形,PF=PM,
∴PM⊥抛物线的准线,设P(,m),则M(-1,m),
等边三角形边长为1+,F(1,0),
所以,由PM=FM,得1+=,解得m=2
∴等边三角形边长为4,其面积为4
故选D.
点评:中档题,结合抛物线及其准线,应用抛物线的几何性质,明确三角形特征,建立假设量的方程,进一步计算三角形面积。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

抛物线的焦点为在抛物线上,且,弦的中点在其准线上的射影为,则的最大值为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个顶点的坐标,焦距的一半为3的椭圆的标准方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于曲线,给出下面四个命题:
①曲线不可能表示椭圆;   ②当时,曲线表示椭圆;
③若曲线表示双曲线,则
④若曲线表示焦点在轴上的椭圆,则
其中所有正确命题的序号为__    _ __

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知焦距为的双曲线的焦点在x轴上,且过点P .
(Ⅰ)求该双曲线方程 ;
(Ⅱ)若直线m经过该双曲线的右焦点且斜率为1,求直线m被双曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设是圆上的动点,点轴上投影,上一点,且.当在圆上运动时,点的轨迹为曲线. 过点且倾斜角为的直线交曲线两点.
(1)求曲线的方程;
(2)若点F是曲线的右焦点且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线=1的两条渐近线互相垂直,那么该双曲线的离心率是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知分别是双曲线的左、右焦点,若关于渐近线的对称点恰落在以为圆心,为半径的圆上,则的离心率为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线p>0)的准线与圆相切,则p的值为(    )
A.10B.6 C.D.

查看答案和解析>>

同步练习册答案