精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,曲线C的参数方程为为参数),以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系.

1)设射线l的极坐标方程为,若射线l与曲线C交于AB两点,求AB的长;

2)设MN是曲线C上的两点,若∠MON,求的面积的最大值.

【答案】1;(21

【解析】

1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换;

2)设MN,求出范围,再利用,通过三角函数关系式的恒等变换及正弦型函数的性质的应用求出结果.

解:(1)曲线C的参数方程为为参数),转换为直角坐标方程为,其为过原点的圆

整理得,其为过坐标原点的圆,

根据转换为极坐标方程为

整理得

射线l的极坐标方程为与曲线C相交于AB两点,

由于射线l过坐标原点,故其中有一个交点为坐标原点,

所以

2)设MN

由于直线OC的斜率为

又圆C过原点,故过原点与圆C相切的切线的斜率为k

从而,得

,即时,的最大值为1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 的左、右焦点分别为 为坐标原点, 是双曲线上在第一象限内的点,直线分别交双曲线左、右支于另一点 ,且,则双曲线的离心率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】24届冬奥会将于202224日至222日在北京市和河北省张家口市联合举行,这是中国历史上第一次举办冬季奥运会.为了宣传冬奥会,让更多的人了解、喜爱冰雪项目,某校高三年级举办了冬奥会知识竞赛(总分100分),并随机抽取了名中学生的成绩,绘制成如图所示的频率分布直方图.已知前三组的频率成等差数列,第一组和第五组的频率相同.

)求实数的值,并估计这名中学生的成绩平均值;(同一组中的数据用该组区间的中点值作代表)

)已知抽取的名中学生中,男女生人数相等,男生喜欢花样滑冰的人数占男生人数的,女生喜欢花样滑冰项的人数占女生人数的,且有95%的把握认为中学生喜欢花样滑冰与性别有关,求的最小值.

参考数据及公式如下:

0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,四边形为菱形,,二面角为直二面角,点是棱的中点.

(Ⅰ)求证:

(Ⅱ)若,当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为的中点,下列说法中正确的是(  

A.所成的角大于

B.到平面的距离为

C.三棱锥的外接球的表面积为

D.直线与平面所成的角为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,二面角中,,射线分别在平面内,点A在平面内的射影恰好是点B,设二面角与平面所成角、与平面所成角的大小分别为,则( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二某班共有45人,学号依次为12345,现按学号用系统抽样的办法抽取一个容量为5的样本,已知学号为62433的同学在样本中,那么样本中还有两个同学的学号应为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加,为了制定提升农民收入、实现2020年脱贫的工作计划,该地扶贫办统计了201950位农民的年收入并制成如下频率分布直方图:

1)根据频率分布直方图,估计50位农民的平均年收入(单位:千元);(同一组数据用该组数据区间的中点值表示);

2)由频率分布直方图,可以认为该贫困地区农民年收入X服从正态分布,其中近似为年平均收入近似为样本方差,经计算得=6.92,利用该正态分布,求:

①在扶贫攻坚工作中,若使该地区约有占总农民人数的的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入标准大约为多少千元?

②为了调研“精准扶贫,不落一人”的政策要求落实情况,扶贫办随机走访了1000位农民.若每位农民的年收入互相独立,问:这1000位农民中的年收入不少于12.14千元的人数最有可能是多少?

附参考数据:,若随机变量X服从正态分布,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.

(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;

(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.

查看答案和解析>>

同步练习册答案