精英家教网 > 高中数学 > 题目详情

【题目】某工厂有两台不同机器AB生产同一种产品各10万件,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如图所示:

该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到的产品,质量等级为良好;鉴定成绩达到的产品,质量等级为合格将这组数据的频率视为整批产品的概率.

从等级为优秀的样本中随机抽取两件,记X为来自B机器生产的产品数量,写出X的分布列,并求X的数学期望;

完成下列列联表,以产品等级是否达到良好以上含良好为判断依据,判断能不能在误差不超过的情况下,认为B机器生产的产品比A机器生产的产品好;

A生产的产品

B生产的产品

合计

良好以上含良好

合格

合计

已知优秀等级产品的利润为12元件,良好等级产品的利润为10元件,合格等级产品的利润为5元件,A机器每生产10万件的成本为20万元,B机器每生产10万件的成本为30万元;该工厂决定:按样本数据测算,两种机器分别生产10万件产品,若收益之差达到5万元以上,则淘汰收益低的机器,若收益之差不超过5万元,则仍然保留原来的两台机器你认为该工厂会仍然保留原来的两台机器吗?

附:独立性检验计算公式:

临界值表:

k

【答案】(I)详见解析;(II)详见解析;(III)不会.

【解析】

从等级为优秀的样本中随机抽取两件,记X为来自B机器生产的产品数量,求出X的可能值,求出个;求出概率写出X的分布列,并然后求X的数学期望;

完成下列列联表,求出,然后判断以产品等级是否达到良好以上含良好为判断依据,判断能不能在误差不超过的情况下,认为B机器生产的产品比A机器生产的产品好;

求出两种机器的利润,然后比较即可.

从茎叶图可以知道,样本中优秀的产品有2个来自A机器,3个来自B机器;

所以X的可能取值为0,1,

X的分布列为:

X

0

1

2

P

所以

由已知可得,列联表为

A生产的产品

B生产的产品

合计

良好以上

6

12

18

合格

14

8

22

合计

20

20

40

所以不能在误差不超过的情况下,认为产品等级是否达到良好以上与生产产品的机器有关

机器每生产10万件的利润为万元,

B机器每生产10万件的利润为万元,

所以

所以该工厂不会仍然保留原来的两台机器,应该会卖掉A机器,同时购买一台B机器

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我校的课外综合实践研究小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到

市气象观测站与市医院抄录了16月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到

如下资料:

日期

110

210

310

410

510

610

昼夜温差 (°C)

10

11

13

12

8

6

就诊人数 ()

22

25

29

26

16

12

该综合实践研究小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

(1)若选取的是1月与6月的两组数据,请根据25月份的数据,求出关于的线性回归方程

2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

参考数据:

.

参考公式:回归直线,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(1﹣ )的定义域为[1,+∞),则函数y= 的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线l与圆相交于不同的两点A,B.

(1)求线段AB的中点M的轨迹C的方程;

(2)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,点的中点

(1)求证:平面

(2)若平面 平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60][60,70][70,80][80,90][90,100].

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[5090)之外的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,BC= ,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1

(1)求证:CD=C1D;
(2)求二面角A1﹣B1D﹣P的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P是曲线y=x3 x+ 上的任意一点,点P处的切线倾斜角为α,则α的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣9x,函数g(x)=3x2+a.
(1)已知直线l是曲线y=f(x)在点(0,f(0))处的切线,且l与曲线y=g(x)相切,求a的值;
(2)若方程f(x)=g(x)有三个不同实数解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案