精英家教网 > 高中数学 > 题目详情

【题目】对于函数的定义域为,如果存在区间,同时满足下列条件:

上是单调函数;

②当的定义域为时,值域也是,则称区间是函数的“区间”.对于函数.

1)若,求函数处的切线方程;

2)若函数上存在“区间”,求的取值范围.

【答案】12

【解析】

1 ,则,求出切线斜率,代入点斜式方程,可得答案;
2 结合函数存在区间的定义,分类讨论满足条件的a的取值范围,综合讨论结果,可得答案.

解:(1时,

∴函数处的切线方程为,即

2时,,在区间单调递增,在区间单调递减

设函数上存在“区间”是

i)当时,由题意可知,即

转化为有两个交点,

时,为增函数,

时,为减函数,

所以有

解得

ii)当时,由题意可知,,两式相减得,,此式不可能成立,所以此时不存在“区间”.

综上所述,函数上存在“区间”的的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在五棱锥中,平面,,

1)证明:

2)过点作平行于平面的截面,与直线分别交于点,求夹在该截面与平面之间的几何体体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为的等边三角形内任一点到三边距离之和为定值,则这个定值为;推广到空间,棱长为的正四面体内任一点到各面距离之和为___________________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今有6个人组成的旅游团,包括4个大人,2个小孩,去庐山旅游,准备同时乘缆车观光,现有三辆不同的缆车可供选择,每辆缆车最多可乘3人,为了安全起见,小孩乘缆车必须要大人陪同,则不同的乘车方式有_____.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国个人所得税法》规定,公民月收入总额(工资、薪金等)不超过免征额的部分不必纳税,超过免征额的部分为全月应纳税所得额,个人所得税税款按税率表分段累计计算.为了给公民合理减负,稳步提升公民的收入水平,自2018101日起,个人所得税免征额和税率进行了调整,调整前后的个人所得税税率表如下:

个人所得税税率表(调整前)

个人所得税税率表(调整后)

免征额3500

免征额5000

级数

全月应纳税所得额

税率

级数

全月应纳税所得额

税率

1

不超过1500元的部分

1

不超过3000元的部分

2

超过1500元至4500元的部分

2

超过3000元至12000元的部分

3

超过4500元至9000元的部分

3

超过12000元至25000元的部分

1)已知小李20189月份上交的税费是295元,10月份工资、薪金等税前收入与9月份相同,请帮小李计算一下税率调整后小李10月份的税后实际收入是多少?

2)某税务部门在小李所在公司利用分层抽样方法抽取某月100位不同层次员工的税前收入,并制成下面的频率分布直方图.

i)请根据频率分布直方图估计该公司员工税前收入的中位数;

ii)同一组中的数据以这组数据所在区间中点的值作代表,按调整后税率表,试估计小李所在的公司员工该月平均纳税多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),以为极点,轴的非负半轴为极轴建极坐标系,直线的极坐标方程为

(Ⅰ)求的极坐标方程;

(Ⅱ)射线与圆C的交点为与直线的交点为,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数.

1)若,求的解析式;

2)当时,对任意的恒成立,求实数的取值范围;

3)设函数在两个不同零点,将关于的不等式的解集记为.已知函数的最小值为,且函数上不存在最小值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是国家统计局公布的2013-2018年入境游客(单位:万人次)的变化情况,则下列结论错误的是(

A.2014年我国入境游客万人次最少

B.4年我国入境游客万人次呈逐渐增加趋势

C.6年我国入境游客万人次的中位数大于13340万人次

D.3年我国入境游客万人次数据的方差小于后3年我国入境游客万人次数据的方差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆)的离心率是,点在短轴上,且

(1)球椭圆的方程;

(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由

查看答案和解析>>

同步练习册答案