精英家教网 > 高中数学 > 题目详情
14.f(a+b)=f(a)f(b)(a,b∈N*),且f(1)=2,则$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…$\frac{f(2016)}{f(2015)}$+$\frac{{f({2018})}}{{f({2017})}}$=2018.

分析 推导出$\frac{f(x+1)}{f(x)}$=2,由此能求出$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…$\frac{f(2016)}{f(2015)}$+$\frac{{f({2018})}}{{f({2017})}}$的值.

解答 解:∵f(a+b)=f(a)f(b)(a,b∈N*),且f(1)=2,
∴f(x+1)=2f(x),∴$\frac{f(x+1)}{f(x)}$=2,
∴$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…$\frac{f(2016)}{f(2015)}$+$\frac{{f({2018})}}{{f({2017})}}$=2×1014=2018.
故答案为:2018.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-$\frac{4}{3}$.
(1)求函数f(x)的解析式;         
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)化简f(α)=$\frac{{sin(\frac{π}{2}+α)+sin(-π-α)}}{{3cos(2π-α)+cos(\frac{3π}{2}-α)}}$; 
(2)若tanα=1,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列命题:
①命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”
②“x=1”是“x2-3x+2=0”的充分不必要条件
③若p∧q为假命题,则p,q均为假命题
④对于命题p:?x∈R,使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0,
说法错误的是③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知△ABC中,A,B,C的对边分别为a,b,c,若$a=\sqrt{10}$,c=3,$cosA=\frac{1}{4}$,则b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆心在直线5x-3y=8上,又与两坐标轴相切的圆的方程是(x-4)2+(y-4)2=16和(x-1)2+(y+1)2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列表示中不正确的是(  )
A.终边在x轴上角的集合是{α|α=kπ,k∈Z}
B.终边在y轴上角的集合是$\{α|α=\frac{π}{2}+kπ,k∈Z\}$
C.终边在坐标轴上角的集合是$\{α|α=k•\frac{π}{2},k∈Z\}$
D.终边在直线y=x上角的集合是$\{α|α=\frac{π}{4}+2kπ,k∈Z\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列$\{{a_n}\}(n∈{N^*})$的前12项,其中横坐标为奇数项,纵坐标为偶数项,按如此规律下去,则a2017+a2018+a2019等于(  )
A.1002B.1004C.1007D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}(2x-1)}}$,则f(x+1)的定义域为(  )
A.(-$\frac{1}{2}$,0)B.(-$\frac{1}{2}$,0]C.(-$\frac{1}{2}$,+∞)D.(0,+∞)

查看答案和解析>>

同步练习册答案