精英家教网 > 高中数学 > 题目详情

【题目】已知关于关于x的不等式ax2+bx+c<0的解集为(﹣∞,﹣2)∪(﹣ ,+∞),则不等式ax2﹣bx+c>0的解集为

【答案】( ,2)
【解析】解:关于x的不等式ax2+bx+c<0的解集为(﹣∞,﹣2)∪(﹣ ,+∞), ∴a<0,且﹣ ,﹣2为方程ax2+bx+c=0的两根,
∴﹣ +(﹣2)=﹣ ,且﹣ ×(﹣2)=
∴b= a,c=a,
∴不等式ax2﹣bx+c>0可化为ax2 ax+a>0,
∴2x2﹣5x+2<0,
即(2x﹣1)(x﹣2)<0,
解得 <x<2,
∴不等式ax2﹣bx+c>0的解集为( ,2).
所以答案是:( ,2).
【考点精析】认真审题,首先需要了解解一元二次不等式(求一元二次不等式解集的步骤:一化:化二次项前的系数为正数;二判:判断对应方程的根;三求:求对应方程的根;四画:画出对应函数的图象;五解集:根据图象写出不等式的解集;规律:当二次项系数为正时,小于取中间,大于取两边).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.
(1)求该圆台母线的长;
(2)求该圆台的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点到准线的距离为,直线与抛物线交于两点,过这两点分别作抛物线的切线,且这两条切线相交于点.

(1)若的坐标为,求的值;

(2)设线段的中点为,点的坐标为,过的直线与线段为直径的圆相切,切点为,且直线与抛物线交于两点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,坐标平面上一点P满足: 的周长为6,记点P的轨迹为.抛物线为焦点,顶点为坐标原点O.

(Ⅰ)求 的方程;

(Ⅱ)若过的直线与抛物线交于两点,问在上且在直线外是否存在一点,使直线的斜率依次成等差数列,若存在,请求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,且当x>0时,函数f(x)的解析式为
(1)求当x<0时函数f(x)的解析式;
(2)用定义证明f(x)在(0,+∞)上的是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABC﹣A′B′C′,侧棱与底面垂直,且所有的棱长均为2,E为AA′的中点,F为AB的中点. (Ⅰ)求多面体ABCB′C′E的体积;
(Ⅱ)求异面直线C'E与CF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某理财公司有两种理财产品.这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):

产品

产品(其中

(Ⅰ)已知甲、乙两人分别选择了产品和产品进行投资,如果一年后他们中至少有一人获利的概率大于,求的取值范围;

(Ⅱ)丙要将家中闲置的10万元钱进行投资,以一年后投资收益的期望值为决策依据,在产品和产品之中选其一,应选用哪个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点在椭圆上, ,过点的直线与椭圆分别交于两点.

(1)求椭圆的方程及离心率;

(2)若的面积为为坐标原点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S. ①当 时,S为四边形
②截面在底面上投影面积恒为定值
③不存在某个位置,使得截面S与平面A1BD垂直
④当 时,S与C1D1的交点满足C1R1=
其中正确命题的个数为

A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案