精英家教网 > 高中数学 > 题目详情
11.已知椭圆的中心在原点焦点在x轴上离心率是$\frac{\sqrt{5}}{5}$,且过点P(-5,4),求椭圆的方程.

分析 先假设椭圆的方程,再利用的椭圆的离心率是$\frac{\sqrt{5}}{5}$,且过点P(-5,4),即可求得椭圆C的方程.

解答 解:设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
∵椭圆C的离心率为$\frac{\sqrt{5}}{5}$,
∴$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{1}{5}$,①
∵椭圆过点P(-5,4),
∴$\frac{25}{{a}^{2}}+\frac{16}{{b}^{2}}$=1②
由①②解得:b2=36,a2=45
∴椭圆的方程为$\frac{{x}^{2}}{45}+\frac{{y}^{2}}{36}$=1.

点评 本题重点考查椭圆的标准方程,考查椭圆的性质,解题的关键是待定系数法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知定义在R+上的函数f(x)满足:
(1)对任意a,b∈R+,有f(ab)=f(a)+f(b);
(2)当x>1时,f(x)<0;
(3)f(3)=-1.
现有两个集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+}; B={(p,q)|f($\frac{p}{q}$)+$\frac{1}{2}$=0,p,q∈R+}.试问:是否存在p,q,使A∩B≠∅,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标分别是-2,6,图象与y轴相交,交点与原点的距离为3,求此函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$+$\overrightarrow{b}$=(5,-10),$\overrightarrow{a}$-$\overrightarrow{b}$=(3,6),则$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值为(  )
A.-$\frac{\sqrt{13}}{13}$B.$\frac{\sqrt{13}}{13}$C.-$\frac{2\sqrt{13}}{13}$D.$\frac{2\sqrt{13}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一化工厂生产某种产品,其生产成本为20元/kg,出厂价为50元/kg,在生产1kg这种产品的同时,还生产1.5m3的污水,污水的处理有两种方式:一种是直接排入河流,另一种是输送到污水处理厂,环保部门对排入河流的污水收费标准是15元/m3,污水处理厂对污水的收费标准是5元/m3,但只能净化污水的80%,未净化的污水仍排入河流,且污水排放费仍要生产产品的化工厂支付,若污水处理厂处理污水的最大能力是1m3/min,环保部门允许该厂的污水排入河流的最大排放量为0.4m3/min,问:该化工厂每分钟生产多少产品,每分钟直接流入河流的污水为多少时,纯利润最高?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的通项an=2n+1,由bn=$\frac{{a}_{1}+{a}_{2}+{a}_{3}+…+{a}_{n}}{n}$所确定的数列{bn}的前n项和是Sn=$\frac{1}{2}{n}^{2}$+$\frac{5}{2}n$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.是否存在实数a,使f(x)=loga(ax2-x)(a>0,且a≠1)在区间[2,4]上是增函数?若存在,求出a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.判断下列函数的奇偶性:f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x+1,x>0}\\{{x}^{2}+x-1,x≤0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x,y满足约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+y-4≤0}\\{x+y≥0}\end{array}\right.$,则3x+2y的最大值为(  )
A.-1B.4C.$\frac{22}{3}$D.8

查看答案和解析>>

同步练习册答案