精英家教网 > 高中数学 > 题目详情
15.直线x-ysinθ+1=0(θ∈R)的倾斜角范围是$[\frac{π}{4},\frac{3π}{4}]$.

分析 由直线的倾斜及和斜率的关系,以及正切函数的值域可得.

解答 解:设直线x-ysinθ+1=0的倾斜角为α,
当$α=\frac{π}{2}$时,则sinθ=0,符合题意,
当$α≠\frac{π}{2}$时,sinθ≠0,
可得直线的斜率k=$tanα=\frac{1}{sinθ}∈(-∞,-1]∪[1,+∞)$,
又∵0<α<π,∴$\frac{π}{4}≤α<\frac{π}{2}$或$\frac{π}{2}<α≤\frac{3π}{4}$.
综上满足题意的倾斜角范围为:$[\frac{π}{4},\frac{3π}{4}]$
故答案为:$[\frac{π}{4},\frac{3π}{4}]$

点评 本题考查斜率的概念及正弦、正切函数的图象和值域,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x(x2-ax+3).
(Ⅰ)若x=$\frac{1}{3}$是f(x)的极值点,求f(x)在区间[-1,4]上的最大值与最小值;
(Ⅱ)若f(x)在[1,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)的定义域为[-1,5],f(x)的导函数f′(x)的图象如图所示.若f(x)在区间[m,m+1]上是单调函数,则实数m的取值范围是{m|m=-1或0≤m≤1或2≤m≤3或m=4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知两个实数a、b(a≠b)满足aea=beb,命题p:lna+a=lnb+b;命题q:(a+1)(b+1)<0.则下面命题是真命题的是(  )
A.p∨(¬q)B.p∧(¬q)C.p∨qD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是(2)(4).
(1)A′C⊥BD;  (2)∠BA′C=90°;
(3)CA′与平面A′BD所成的角为30°;
(4)四面体A′-BCD的体积为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=x3+ax2+bx+a2在x=1处的极值为10,则a+b=(  )
A.0或-7B.-7C.0D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列参数方程中,与普通方程x2+y-1=0等价的参数方程是(  )
A.$\left\{{\begin{array}{l}{x=sinφ}\\{y={{cos}^2}φ}\end{array}}\right.$(φ为参数)B.$\left\{\begin{array}{l}{x=cosφ}\\{y=si{n}^{2}φ}\end{array}\right.$(φ为参数)
C.$\left\{\begin{array}{l}{x=\sqrt{1-r}}\\{y=r}\end{array}\right.$(r为参数)D.$\left\{\begin{array}{l}{x=tanφ}\\{y=1-ta{n}^{2}φ}\end{array}\right.$(φ为参数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).
(1)求曲线C上的动点M和直线l上的动点N的距离的最小值;
(2)求过曲线C上某一点与直线l平行的切线被曲线C关于y轴对称的曲线C′所截得的弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和Sn=aqn+b(a,b为非零实数,q≠0且q≠1).
(1)当a,b满足什么关系式,{an}是等比数列;
(2)若{an}为等比数列,证明:以(an,Sn)为坐标的点都落在同一条直线上.

查看答案和解析>>

同步练习册答案