精英家教网 > 高中数学 > 题目详情

M为△ABC内一点,过点M的一直线交AB边于P,交AC边于点Q,则条件p:“数学公式”是条件q:“M点是△ABC的重心”成立的


  1. A.
    充分而不必要条件
  2. B.
    必要而不充分条件
  3. C.
    充要条件
  4. D.
    既不充分又不必要条件
C
分析:根据三角形中线段长度之间的等量关系判断出条件p成立时,条件q也成立;反之通过三角形的重心满足的性质:到顶点距离等于到对边中点的2倍判断出条件q成立得到条件p成立,利用充要条件的定义加以判断.
解答:①∵P为AB边上(除A外)的任意一点所以当P与B重合时,
可得,

此时Q为AC边中点,
即直线BM过AC边中点.
同理,因为Q为AC边上(除A外)的任意一点
∴当Q与C重合时,可得,
,此时P为AB边中点,
即直线CM过AB边中点
设D为AC边中点,E为AB边中点,连接ED,直线AM分别交ED、BC于G、F,
∵ED是△ABC的一条中位线,



∴BF=FC
∵BF=FC,
∴F为BC边上中点因为直线BM过AC边中点D,直线CM过AB边中点E,直线 AM过BC边中点F
∴M为△ABC的重心.
②若已知M为重心,亦可求证:
证明:作BF、CE平行于PQ,分别交AC、AB于F、E,
AM的延长分别交CE、BC、BF于G、D、H,
∵M为△ABC的重心,
∴D为BC边中点
∵BF平行于PQ,CE平行于PQ,
∴BF平行于CE
∵BD=DC,BF平行于CE,
∴GD=DH
∵M为△ABC的重心,
∴AM=2MD=MD+(MG+GD)
∵GD=DH,AM=MD+(MG+GD)
∴AM=MD+MG+DH=(MD+DH)+MG=MH+MG
∵AM=MH+MG,
∴3AM=(AM+MH)+(AM+MG)=AH+AG
∵3AM=AH+AG

∵BF平行于PQ,

∵CE平行于PQ,



∴p是q的充要条件
故选C
点评:判断应该条件是另一个条件的什么条件,应该先判断前者成立是否能推出后者成立,反之后者成立是否能推出前者成立,再利用充要条件的定义加以判断;解决三角形的重心问题要注意三角形的重心满足的性质:到顶点距离等于到对边中点的2倍.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

M为△ABC内一点,过点M的一直线交AB边于P,交AC边于点Q,则条件p:“
AB
AP
+
AC
AQ
=3
”是条件q:“M点是△ABC的重心”成立的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充要条件
D、既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,D为AB上一点,M为△ABC内一点,且满足
AD
=
3
4
AB
AM
=
AD
+
3
5
BC
,则△AMD与△ABC的面积比为(  )
A、
9
25
B、
4
5
C、
9
16
D、
9
20

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•武汉模拟)M为△ABC内一点,过点M的一直线交AB边于P,交AC边于点Q,且满足“
AB
AP
+
AC
AQ
=3
”那么M一定是△ABC的(  )

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省高三第一次模拟考试数学理卷 题型:选择题

M为△ABC内一点,过点M的任意一直线交AB边于P,交AC边于点Q,(点P,Q不与点A重合);则条件p:“”是条件q:“M点是△ABC的重心”成立的()

    A.充分而不必要条件         B.必要而不充分条件

C.充要条件             D.既不充分又不必要条件

 

查看答案和解析>>

科目:高中数学 来源:2010年湖北省武汉市高三四月调考数学试卷(文科)(解析版) 题型:选择题

M为△ABC内一点,过点M的一直线交AB边于P,交AC边于点Q,且满足“”那么M一定是△ABC的( )
A.重心
B.垂心
C.内心
D.外心

查看答案和解析>>

同步练习册答案