精英家教网 > 高中数学 > 题目详情

【题目】已知函数,以下关于的结论其中正确的结论是(

①当时,上无零点;

②当时,上单调递增;

③当时,上有无数个极值点;

④当时,上恒成立.

A.①④B.②③C.①②④D.②③④

【答案】D

【解析】

根据零点存在性定理,可判断①;通过求导,判断符号以及零点的个数,可判断②③;利用导数结合不等式性质可判断④,即可得出结论.

对于①:当时,

,

存在零点,所以①错误;

对于②:当时,

时,

恒成立,

上单调递增,故②正确

对于③:当时,

,得

画出作出如图,

时,

有无数个交点,

交点的横坐标为的极值点,

故此时,上有无数个极值点;故③正确

对于④:当时,

时,

,得

所以单调递减,故当时,

时,

时,,进一步分析,

时,

对于,得单调递增,

单调递减,

单调递增,

时,取得极小值,也是最小为

上恒大于0,即

,在时有,故单调递增,

,所以

所以,

综上,当时,上恒成立,故④正确

故答案为:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】

已知抛物线的焦点为上异于原点的任意一点,过点的直线于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.

)求的方程;

)若直线,且有且只有一个公共点

)证明直线过定点,并求出定点坐标;

的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,椭圆上的点到左焦点的距离的最大值为.

(1)求椭圆的标准方程;

(2)已知直线与椭圆交于两点.在轴上是否存在点,使得,若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点为椭圆的右焦点,过的直线与椭圆交于两点,线段的中点为.

1)求椭圆的方程;

2)若直线斜率的乘积为,两直线分别与椭圆交于四点,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,如图,C1C2分别交x轴正半轴于点EA.射线OD分别交C1C2于点BD,动点P满足直线BPy轴垂直,直线DPx轴垂直.


1)求动点P的轨迹C的方程;

2)过点E作直线l交曲线C与点MN,射线OHl与点H,且交曲线C于点Q.问:的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后、左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体有________个面,其体积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与函数)的图象相交,将其中三个相邻交点从左到右依次记为ABC,且满足有下列结论:

n的值可能为2

,且时,的图象可能关于直线对称

时,有且仅有一个实数ω,使得上单调递增;

不等式恒成立

其中所有正确结论的编号为( )

A.③B.①②C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,图(a)、图(b)是边长为的两块正方形钢板,现要将图(a)裁剪焊接成一个正四棱柱,将图(b)裁剪焊接成一个正四棱锥,使它们的全面积都等于这个正方形的面积(不计焊接缝的面积).

1)将裁剪方法用虚线标示在图中,并作简要说明;

2)比较所制成的正四棱柱和正四棱锥体积大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,由经过伸缩变换得到曲线,以原点为极点,轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为

(1)求曲线的极坐标方程以及曲线的直角坐标方程;

(2)若直线的极坐标方程为与曲线、曲线在第一象限交于,且,点的极坐标为,求的面积.

查看答案和解析>>

同步练习册答案