精英家教网 > 高中数学 > 题目详情

【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班人进行了问卷调查得到了如下的列联表:

喜爱打篮球

不喜爱打篮球

合计

男生

女生

合计

已知在全部人中随机抽取人抽到喜爱打篮球的学生的概率为.

(1)请将上面的列联表补充完整;

(2)是否有的把握认为喜爱打篮球与性别有关?说明你的理由;

下面的临界值表供参考:

(参考公式:

【答案】(1)列联表见解析;(2)有的把握认为喜爱打篮球与性别有关,理由见解析.

【解析】分析:(1)根据全部人中随机抽取人抽到喜爱打篮球的学生的概率为,即可将列联表补充完整;(2)根据公式求出与临界值比较,即可得到结论.

详解:(1)列联表补充如下:

喜爱打篮球

不喜爱打篮球

合计

男生

女生

合计

(2)∵

∴有的把握认为喜爱打篮球与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校学生社团心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的曲线.当时,曲线是二次函数图象的一部分,当时,曲线是函数图象的一部分.根据专家研究,当注意力指数大于80时学习效果最佳.

(1)试求的函数关系式;

(2)教师在什么时段内安排核心内容,能使得学生学习效果最佳?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求处的切线方程;

(2)若在区间上恰有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中错误的是(  )
A.设命题p:?x∈R,使+x+2<0,则¬P:?x∈R,都有+x+2≥0
B.若x,y∈R,则“x=y”是“xy≤取到等号”的充要条件
C.已知命题p和q,若p∧q为假命题,则命题p与q都为假命题
D.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,则不等式fx-2+fx2-4)<0的解集为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F为抛物线的焦点,A、B是抛物线C上的两个动点,O为坐标原点.

(I)若直线AB经过焦点F,且斜率为2,求线段AB的长度|AB|;

(II)OAOB时,求证:直线AB经过定点M(4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=|x-a|+x,其中a0

1)当a=3时,求不等式fx)≥x+4的解集;

2)若不等式fx)≥x+2a2x[13]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某公路 一侧有一块空地 ,其中 .当地政府拟在中间开挖一个人工湖△OMN,其中MN都在边AB上(MN不与AB重合,MAN之间),且MON=30°.

(1)若M在距离A2 km处,求点MN之间的距离;

(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=5,a5﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn=an+bn , 求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案