精英家教网 > 高中数学 > 题目详情
已知
1
m
+
2
n
=1(m>0,n>0),则当m+n取得最小值时,椭圆
x2
m2
+
y2
n2
=1的离心率为(  )
A、
1
2
B、
2
2
C、
3
2
D、
2
5
5
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先利用基本不等式求出当m+n取得最小值时m和n 的值,从而得到椭圆的标准方程,由方程求得椭圆的离心率.
解答: 解:∵已知
1
m
+
2
n
=1(m>0,n>0),
∴m+n=(
1
m
+
2
n
)(m+n)=1+2+
2m
n
+
n
m
≥3+2
2

当且仅当
2m
n
=
n
m
1
m
+
2
n
=1即 m=
2
+1,n=
2
+2时,等号成立.
此时,c=
2
+1,
∴e=
c
n
=
2
2

故选:B.
点评:本题考查基本不等式的应用和椭圆的简单性质的应用,本题解题的关键是正确利用基本不等式来做出m,n的值.本题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1中,AA1=c,AB=a,AD=b,a>b,设异面直线AC1与BD所成角为θ.求证:cosθ=
a2-b2
(a2+b2)(a2+b2+c2)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形A A1 C1C为矩形,四边形CC1B1 B为菱形,且平面CC1B1 B⊥A A1 C1C,D,E分别是A1 B1和C1C的中点.求证:(1)BC1⊥平面AB1C;
(2)DE∥平面AB1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体ABCD中,若M、N分别是棱AD、BC的中点,AC=BD=6,MN=3
2
,求MN与AC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y,z 满足x2+y2+z2=1,则
2
xy+yz的最大值是为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

利用五点法作出函数y=1-sinx(0≤x≤2π)的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且a1=2,a2=8,a3=24,{an+1-2an}为等比数列.
(1)求证:{
an
2n
}是等差数列
(2)求
1
Sn
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设α∈(0,π),且α≠
π
2
,当∠xOy=α时,定义坐标系xOy为α-仿射坐标(如图),在α-仿射坐标系中,任意一点P的坐标这样定义“
e1
e2
分别是与x轴,y轴方向同向的单位向量,若向量
OP
=x
e1
+y
e2
,则记
OP
=(x,y),下列结论正确的是
 
(写上所有正确结论的序号)
①设向量
α
=(m,n),
b
=(s,t),若
α
=
b
,则有m=m,s=t;
②设向量
α
=(m,n),则|
α
|=
m2+n2

③设向量
α
=(m,n)
b
=(s,t),若
α
b
,则有mt-ns=0;
④设向量
α
=(m,n)
b
=(s,t),若
α
b
,则有mt+ns=0;
⑤设向量
α
=(1,2)
b
=(2,1),若
α
b
的夹角为
π
3
,则有α=
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是一个算法的程序框图,最后输出的W是(  )
A、22B、23C、24D、25

查看答案和解析>>

同步练习册答案