精英家教网 > 高中数学 > 题目详情

【题目】为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业。经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产万件,需另投入流动成本为万元,且,每件产品售价为10元。经市场分析,生产的产品当年能全部售完。

(1)写出年利润(万元)关于年产量(万件)的函数解析式;

(注:年利润=年销售收入-固定成本-流动成本)

(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?

【答案】(1)

(2)当年产量为8万件时,小李在这一产品的生产中所获利润最大,最大利润为万元。

【解析】

(1)因为每件产品售价为10原,则万件产品销售收入为万元,分两种情况讨论,当时,当时,分别利用销售收入减去成本可得出年利润(万元)关于年产量(万件)的函数解析式;(2)当时,由二次函数的性质可得取得最大值;当时, 取得最大值,由可得结果.

(1)因为每件产品售价为10元,则万件产品销售收入为万元,

依题意得:

时,

时,

所以

(2)当时,

时,取得最大值

时,,所以为减函数,

时,取得最大值,因为

故当年产量为8万件时,小李在这一产品的生产中所获利润最大,最大利润为万元

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男生人数多于女生人数;②女生人数多于教师人数;③教师人数的两倍多于男生人数.问:

1)若教师人数为4,则女生人数的最大值为多少?

2)该小组人数的最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设点为椭圆的右焦点,圆且斜率为的直线交圆两点,交椭圆于点两点,已知当时,

(1)求椭圆的方程.

(2)当时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCDA1B1C1D1中,DADC2EC1D1的中点,FCE的中点.

1)求证:EA∥平面BDF

2)求证:平面BDF⊥平面BCE

3)求二面角DEBC的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:

1)分别估计该市的市民对甲,乙两部门评分的中位数;

2)分别估计该市的市民对甲,乙两部门的评分高于90的概率;

3)根据茎叶图分析该市的市民对甲,乙两部门的评价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】铜陵市出租车已于今年61日起调整运价,现行计价标准是:路程在2.5km以内(含2.5km)按起步价7元收取,超过2.5km后的路程按1.9km收取,但超过8km后的路程需加收50%的返空费(即单价为元).

1)将某乘客搭乘一次出租车的费用(单位:元)表示为行程x,单位:km)的分段函数;

2)某乘客的行程为16km,他准备先乘一辆出租车行驶8km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当 时,讨论 的极值情况;

(2)若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABCa=7,b=8,cosB= –

A

AC边上的高

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,设图象的交点坐标为,若,则的最小值为____

查看答案和解析>>

同步练习册答案