精英家教网 > 高中数学 > 题目详情
若椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,则双曲线
x2
a2
-
y2
b2
=1的渐近线方程为(  )
A、y=±
1
2
x
B、y=±2x
C、y=±4x
D、y=±
1
4
x
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:运用椭圆的离心率公式可得a,b的关系,再由双曲线的渐近线方程,即可得到.
解答: 解:椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2

a2-b2
a
=
3
2

即有
b
a
=
1
2

则双曲线
x2
a2
-
y2
b2
=1的渐近线方程为y=±
b
a
x,
即有y=±
1
2
x.
故选A.
点评:本题考查椭圆和双曲线的方程和性质,考查渐近线方程和离心率公式的运用,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合M={0,1,2},a=0,则下列关系式中正确的是(  )
A、a∈MB、a∉M
C、a⊆MD、{a}=M

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域是[0,5],求函数f(x2-2x-3)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=4x-m•2x(m∈R).
(Ⅰ)当m≤1时,判断函数f(x)在区间(0,1)内的单调性,并用定义加以证明;
(Ⅱ)记g(x)=lgf(x),若g(x)在区间(0,1)上有意义,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-y+1=0与椭圆:x2+7y2=4交于A,B两点.

(Ⅰ)求该椭圆的离心率;
(Ⅱ)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=(n+2)•(
1
3
)
n
,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

几何体的三视图如图,则该几何体的表面积为(  )
A、122+
3
B、122+2
3
C、122+2
6
D、122+
6

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:“x2=1”是“x=-1”的充分不必要条件,命题q:函数y=
x2-2x-3
的定义域是(-∞,-1]∪[3,+∞),则下列结论:
①“p或q”为假;  ②“p且q”为真;  ③p真q假;   ④p假q真.
则正确结论的序号为
 
(把你认为正确的结论编号都写上).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,某养殖户要建一个面积为800平方米的矩形养殖场,要求养殖场的一边利用旧墙(旧墙的长度大于4米),其他各边用铁丝网围成,且在矩形一边的铁丝网的正中间要留一个4米的进出口.设矩形的宽为x米,铁丝网的总长度为y米.
(Ⅰ)写出y与x的函数关系式,并标出定义域;
(Ⅱ)问矩形的长与宽各为多少时,所用的铁丝网的总长度最小?

查看答案和解析>>

同步练习册答案