精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
如图,平面⊥平面是直角三角形,,四边形是直角梯形,其中,,且的中点,分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求二面角的正切值.
(Ⅰ)取的中点,证明四边形为平行四边形, ∴,则平面(Ⅱ)2

试题分析:(Ⅰ)取的中点,连接,由中点,
中点,∴,
,故四边形为平行四边形,                             ……3分
,则平面.                                         ……4分
(Ⅱ) 连接,则,又,平面⊥平面
⊥面, 故面⊥面,                                   ……6分
,则⊥面,
,连
,故为二面角的平面角,                     ……8分
由于的中点,故===1,
,
的中点,故,又的中点,可知,
从而,又的中点,∴的中点∴==,   ……11分
==2,∴二面角平面角的正切值为2.          ……12分
点评:证明空间中直线、平面间的位置关系时,要紧扣判定定理和性质定理,定理中要求的条件缺一不可.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱的各棱长均为2, 侧棱与底面所成角为,且侧面底面.

(1)证明:点在平面上的射影的中点;
(2)求二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线的夹角大小等于___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是三个不同的平面.给出下列四个命题:
①若,则
②若,则
③若,则
④若,则
其中正确命题的序号是(  )
A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图在长方体中,其中分别是的中点,则以下结论中

垂直;        ②⊥平面
所成角为; ④∥平面
不成立的是(   )
A.②③  B.①④ C.③  D.①②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同的直线,是两个不同的平面,下列命题正确的是(   )
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是空间三条不同的直线,下列命题中正确的是(  )
A.如果.则
B.如果.则共面.
C.如果.则
D.如果共点.则共面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图, 空间四边形ABCD中,若
所成角为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

边长为a的正方形ABCD沿对角线AC将△ADC折起,若∠DAB=60°,则二面角D—AC—B的大小为(  )
A.60°B.90°C.45°D.30°

查看答案和解析>>

同步练习册答案