精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数满足

(1)求函数的单调区间;

(2)如果,且,求证:

【答案】(1)单调递增区间为.; (2)见解析.

【解析】

(1)对求导得,可得,再在fx)中令x0f0),从而得fx)=e2x+x22x,可得,通过研究其导函数得到的单调区间;

2)先由(1)得单调递增且不妨设,分析,得x1x2满足,要证,即证,由单调递增,故只需证明,构造函数再结合单调性即可证明结论.

(1) 由,得

,得,故

,则,故

于是

时,递减;当时,递增;

,故上单调递增,

所以的单调递增区间为

(2) 注意到,由

单调递增,不妨设,则,下面用分析法,

要证,即证,由单调递增,故只需证明

,故只需证,即证

,∴单增,

, 即

上单调递增,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在三棱锥PABC中,AB1BC2ACPCPAPBE是线段BC的中点.

1)求点C到平面APE的距离d

2)求二面角PEAB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:

月份

7

8

9

10

11

12

销售单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14

(1)根据7至11月份的数据,求出关于的回归直线方程;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?

(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

 参考公式:回归直线方程,其中,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABC中,PA⊥底面ABCDAD∥BCAB=AD=AC=3PA=BC=4M为线段AD上一点,AM=2MDNPC的中点.

)证明MN∥平面PAB;

)求直线AN与平面PMN所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图☆的曲线,其生成方法是(I)将正三角形(图(1))的每边三等分,并以中间的那一条线段为一底边向形外作等边三角形,然后去掉底边,得到图(2);(II)将图(2)的每边三等分,重复上述的作图方法,得到图(3);(III)再按上述方法继续做下去,所得到的曲线称为雪花曲线(Koch Snowflake)

123.

设图(1)的等边三角形的边长为1,并且分别将图(1)、(2)、(3中的图形依次记作M1M2M3

1)设中的边数为中每条边的长度为,写出数列的递推公式与通项公式;

2)设的周长为所围成的面积为,求数列{}{}的通项公式;请问周长与面积的极限是否存在?若存在,求出该极限,若不存在,简单说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体ABCDEF中,ABCDAB2AD2,∠ADC=∠BCD120°,四边形EDCF是正方形,二面角EDCA的大小为90°

1)求证:直线AD⊥平面BDE

2)求点D到平面ABE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商家对他所经销的一种商品的日销售量(单位:吨)进行统计,最近50天的统计结果

如下表:

日销售量

1

1.5

2

天数

10

25

15

频率

0.2

若以上表中频率作为概率,且每天的销售量相互独立.

(1)求5天中该种商品恰好有两天的销售量为1.5吨的概率;

(2)已知每吨该商品的销售利润为2千元,表示该种商品某两天销售利润的和(单位:千元),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】F是双曲线1a0b0)的左焦点,过点F作双曲线的一条渐近线的垂线,垂足为A,交另一条渐近线于点B.若3,则此双曲线的离心率为(  )

A.2B.3C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为

(1)求曲线C的参数方程和直线的直角坐标方程;

(2)若直线轴和y轴分别交于AB两点,P为曲线C上的动点,求PAB面积的最大值.

查看答案和解析>>

同步练习册答案