精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面为直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分别为PC,PB的中点.(1)求证:PB⊥DM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,且PE∶ED=λ,使得二面角C-AN-E的平面角为60o.若存在求出λ值,若不存在,请说明理由。
(1)建系,利用,证明PB⊥DM
(2)
(3)先假设存在,求出法向量,可以算出无解,所以不存在符合要求的解.

试题分析:(1)如图以A为原点建立空间直角坐标系

A(0,0,0),B(2,0,0),
C(2,1,0),D(0,2,0)
M(1,,1),N(1,0,1),
E(0,m,2-m),P(0,0,2)
(2,0,-2),(1,-,1),
="0"
(2)=(-2,1,0)平面ADMN法向量=(x,y,z),
=(0,2,0),=(1,0,1) ,
所以 ,即 ,解得=(1,0,-1),
设CD与平面ADMN所成角α,则.
(3)设平面ACN法向量=(x,y,z),
所以,解得=(1,-2,-1),
,所以
同理可以求出平面AEN的法向量
因为,所以
所以 ,
此方程无解,所以不存在符合要求的点.
点评:解决立体几何问题,可以建立空间向量,但是证明时也要根据相应的判定定理和性质定理,定理中要求的条件要一一列举出来,另外还要注意各种角的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.

(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,是棱长为1的正方体,四棱锥中,平面

(Ⅰ)求证:
(Ⅱ)求直线与平面所成角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.

(Ⅰ)证明PQ⊥平面ABCD;
(Ⅱ)求异面直线AQ与PB所成的角;
(Ⅲ)求点P到平面QAD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图所示,四棱锥中,底面是边长为2的菱形,是棱上的动点.

(Ⅰ)若的中点,求证://平面
(Ⅱ)若,求证:
(III)在(Ⅱ)的条件下,若,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,下列结论错误的是
A.∥平面B.平面
C.D.异面直线所成的角是45º

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直三棱柱中,,若中点.
(Ⅰ)求证:∥平面
(Ⅱ)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

ab是两条不重合的直线,是两个不重合的平面,则下列命题中不正确的一个是
A.若B.若,则
C.若D.若,则

查看答案和解析>>

同步练习册答案