精英家教网 > 高中数学 > 题目详情
19.定义在R上的函数f(x),满足f(x+y)=f(x)+f(y)(x,y∈R),且f(1)=2,那么下面四个式子:
①f(1)+2f(1)+…+nf(1);
②$f[\frac{n(n+1)}{2}]$;
③n(n+1);
④n(n+1)f(1)
其中与f(1)+f(2)+…+f(n)(n∈N*)相等的是(  )
A.①③B.①②C.①②③④D.①②③

分析 定义在R上的函数f(x),满足f(x+y)=f(x)+f(y)(x,y∈R),且f(1)=2,令x=1,y=n⇒f(n+1)=f(n)+f(1)⇒f(n+1)-f(n)=2数列{f(n)}是首项为2,公差为2的等差数列,f(n)=2n,逐一判定即可.

解答 解:定义在R上的函数f(x),满足f(x+y)=f(x)+f(y)(x,y∈R),
且f(1)=2,令x=1,y=n⇒f(n+1)=f(n)+f(1)⇒f(n+1)-f(n)=2
数列{f(n)}是首项为2,公差为2的等差数列,∴f(n)=2n,
∴f(1)+f(2)+…+f(n)=2+4+6+…+2n=n(n+1),
故①②③一定相等,④必不等,
故选D.

点评 本题考查了抽象函数的赋值法,及数列的求和,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知椭圆$\frac{x^2}{36}+\frac{y^2}{49}=1$上的一点P到椭圆的一个焦点的距离为3,则P点到另一个焦点的距离(  )
A.3B.4C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x>2,则$y=x+\frac{4}{x-2}$的最小值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若x∈(-∞,2),则$\frac{{5-4x+{x^2}}}{2-x}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.观察下列式子:
1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,

据以上式子可以猜想:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{{{2016}^2}}}$<1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{{{2016}^2}}}$<$\frac{4031}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,则|PA|2+|PB|2+|PC|2的最大值,最小值分别为(  )
A.84,74B.88,72C.73,63D.88,62

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z满足iz=$\frac{2}{1+i}$,则复数z为(  )
A.1+iB.-1-iC.-1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中正确命题的个数是(  )
(1)设f(x)=ax3+bx2+cx+d(a≠0),若f(x)存在极值,则一定既有极大值又有极小值;
(2)命题“若m=3,则椭圆$\frac{x^2}{4}+\frac{y^2}{m}$=1离心率为$\frac{1}{2}$”的逆命题;
(3)设z∈C,命题“若z为实数,则z=$\overline{z}$”的否命题;
(4)设a,b∈R,命题“若ab=0,则复数z=a+bi为纯虚数”的逆否命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题p:?x>0,x-lnx>0,则¬p是(  )
A.?x≤0,x-lnx≤0B.?x>0,x-lnx≤0C.?x≤0,x-lnx≤0D.?x>0,x-ln≤0

查看答案和解析>>

同步练习册答案