精英家教网 > 高中数学 > 题目详情
13.已知函数$f(x)=\sqrt{3}sin(π-x)cos(-x)+sin(π+x)cos(\frac{π}{2}-x)$图象上的一个最低点为A,离A最近的两个最高点分别为B与C,则$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.$9+\frac{π^2}{9}$B.$9-\frac{π^2}{9}$C.$4+\frac{π^2}{4}$D.$4-\frac{π^2}{4}$

分析 由三角函数公式化简可得f(x)=sin(2x+$\frac{π}{6}$)-$\frac{1}{2}$,结合图象可得A、B、C的坐标,可得向量的坐标,计算可得.

解答 解:由三角函数公式化简可得f(x)=$\sqrt{3}$sinxcosx-sinxsinx
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$(1-cos2x)=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x-$\frac{1}{2}$
=sin(2x+$\frac{π}{6}$)-$\frac{1}{2}$,令2x+$\frac{π}{6}$=$\frac{3π}{2}$可得x=$\frac{2π}{3}$,
可取一个最低点A($\frac{2π}{3}$,-$\frac{3}{2}$),
同理可得B($\frac{π}{6}$,$\frac{1}{2}$),C($\frac{7π}{6}$,$\frac{1}{2}$),
∴$\overrightarrow{AB}$=(-$\frac{π}{2}$,2),$\overrightarrow{AC}$=($\frac{π}{2}$,2),
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=-$\frac{{π}^{2}}{4}$+4,
故选:D.

点评 本题考查三角函数恒等变换,涉及图象的性质和向量的数量积的运算,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.$4{({\frac{16}{49}})^{-\frac{1}{2}}}+lg2+lg50$=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)和椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1有相同的焦点,且双曲线的离心率是椭圆离心率的2倍,求双曲线的方程.
(2)已知点P(6,8)是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,F1,F2为椭圆的两焦点,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0.试求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2+bx-lnx(a,b∈R).
(Ⅰ)设b=2-a,求f(x)的零点的个数;
(Ⅱ)设a>0,且对于任意x>0,f(x)≥f(1),试比较lna与-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知F1,F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的左、右焦点,l1,l2为双曲线的两条渐近线.设过点M(b,0)且平行于l1的直线交l2于点P.若PF1⊥PF2,则该双曲线的离心率为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$\frac{\sqrt{14-2\sqrt{41}}}{2}$D.$\frac{\sqrt{14+2\sqrt{41}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2+log${\;}_{\frac{1}{2}}$x.
(I)请画出函数的草图;
(Ⅱ)当x=$\frac{1}{4}$时,求f(x)的值;
(Ⅲ)当-1<f(x)≤3时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列说法:
①扇形的周长为8cm,面积为4cm2,则扇形的圆心角弧度数为1rad;
②函数f(x)=2cosx(sinx+cosx)的最大值为$\sqrt{2}$;
③若α是第三象限角,则$y=\frac{{|{sin\frac{α}{2}}|}}{{sin\frac{α}{2}}}+\frac{{|{cos\frac{α}{2}}|}}{{cos\frac{α}{2}}}$的值为0或-2;
④若sinα=sinβ则α与β的终边相同;
⑤函数$f(x)=\left\{\begin{array}{l}0,x为有理数\\ 1,x为无理数\end{array}\right.$为周期函数;
其中正确的是⑤(写出所有正确答案).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,AD∥BC∥EF,平面ADFE⊥平面BCFE,AE⊥EF,BE⊥EF,AD=AE=BE=2,EF=3,BC=4,G为BC的中点.
(1)求证:BD⊥EG;
(2)求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.函数y=Asin(ωx+φ)(A>0.ω>0)在其一个周期内,的图象上有一个最高点($\frac{π}{12}$,3)和一个最低点($\frac{7π}{12}$,-3).
(1)说明此函数图象是由f(x)=sinx的图象经过怎样的变换得到的;
(2)作出这个函数在一个周期内的简图;
(3)当x∈[-$\frac{π}{4}$,$\frac{π}{6}$],求f(x)的最值.

查看答案和解析>>

同步练习册答案