精英家教网 > 高中数学 > 题目详情
已知数列an(n∈N*)的前n项和为Sn.若Sn满足(2n-1)Sn+1=(2n+1)Sn+4n2-1,是否存在a1,使数列an为等差数列?若存在,求出a1的值;若不存在,请说明理由;
∵(2n-1)Sn+1=(2n+1)Sn+4n2-1,
Sn+1
2n+1
-
Sn
2n-1
=1(n∈N*)

{
Sn
2n-1
}
是以S1=a1为首项,1为公比的等差数列,
∴Sn=(a1+n-1)(2n-1)=2n2+(2a1-3)n+(1-a1),
当n=1时,S1=a1,当n≥2时,an=Sn-Sn-1=4n+2a1-5,
∵数列an为等差数列,
∴a2-a1=4?a1+3=4?a1=1.
∴存在a1=1,使数列an为等差数列..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列an(n∈N*)的前n项和为Sn.若Sn满足(2n-1)Sn+1=(2n+1)Sn+4n2-1,是否存在a1,使数列an为等差数列?若存在,求出a1的值;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an是各项均不为0的等差数列,公差为d,Sn为其前n项和,且满足an2=S2n-1,n∈N*.数列bn满足bn=
1anan+1
,Tn为数列bn的前n项和.
(1)求a1、d和Tn
(2)若对任意的n∈N*,不等式λTn<n+8•(-1)n恒成立,求实数λ的取值范围;
(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的前n项和为Sn,a1=1,Sn=an+1-3n-1,n∈N*
(Ⅰ)证明:数列an+3是等比数列;
(Ⅱ)对k∈N*,设f(n)=
Sn-an+3n  n=2k-1 
log2(an+3)  n=2k.
求使不等式cos(mπ)[f(2m2)-f(m)]≤0成立的正整数m的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•大连二模)已知向量
a
b
满足
a
=(-2sinx,
3
cosx+
3
sinx),
b
=(cosx,cosx-sinx),函数,f(x)=
a
b
(x∈R).
(I)将f(x)化成Asin((ωx+φ)(A>0,ω>0,|φ|<π的形式;
(Ⅱ)已知数列an=
n
2
 
f(
2
-
11π
24
)(n∈N*)
,求{an}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(文)已知等差数列{an}和等比数列{bn}的通项公式分别为an=2(n-1)、bn=(
1
2
)n
,(其中n∈N*).
(1)求数列{an}前n项的和;
(2)求数列{bn}各项的和;
(3)设数列{cn}满足cn=
bn,(当n为奇数时)
an.(当n为偶数时)
,求数列{cn}前n项的和.

查看答案和解析>>

同步练习册答案