(本题满分14分).有一块边长为4的正方形钢板,现对其切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作如下设计:在钢板的四个角处各切去一个边长为的小正方形,剰余部分围成一个长方体,该长方体的高是小正方形的边长.
(1)请你求出这种切割、焊接而成的长方体容器的的容积V1(用表示);
(2)经过设计(1)的方法,计算得到当时,Vl取最大值,为了材料浪费最少,工人师傅还实践出了其它焊接方法,请写出与(1)的焊接方法更佳(使材料浪费最少,容积比Vl大)的设计方案,并计算利用你的设计方案所得到的容器的容积。
略
【解析】(1)解:设切去正方形边长为x,则焊接成的长方体的底面边长为
4—2x,高为x,
∴Vl=(4—2x)2x=4(x3一4x2+4x) (0<x<2) 7分
(2) 能设计出比(1)的方案更佳的方案; 8分
具体如下:
如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;将图②焊成长方体容器. 11分
新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=3×2×1=6,
显然V2>Vl. 13分
故第二种方案符设计得到的容积为6. 14分
第(2)问给分情况说明:
(1)本题是开放性习题,设计方案比较多,其它答案按相应分数给分;
(2)设计为锥体容器的得0分。
(3)设计的容器容积比V1小的得0分)
科目:高中数学 来源: 题型:
π |
3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求实数m的值
(Ⅱ)若ACRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数.
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根,请求出一个长度为的区间,使
;如果没有,请说明理由?(注:区间的长度为).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com