精英家教网 > 高中数学 > 题目详情

【题目】设以的边为长轴且过点的椭圆的方程为椭圆的离心率面积的最大值为所在的直线分别与直线相交于点.

1)求椭圆的方程;

2)设的外接圆的面积分别为,求的最小值.

【答案】1;(2.

【解析】

1)运用椭圆的离心率公式、三角形面积公式和的关系,可得,进而得到椭圆方程;

2)设,将直线、直线分别与直线,求出的坐标,可得;设分别为外接圆的半径,利用正弦定理可得 ,可求的,再利用二次函数的性质,即可求出结果.

1)依题意:

所以.

椭圆的方程为.

2)设,则.

直线与直线联立得.

直线与直线联立得.

.

分别为外接圆的半径,在,所以.

,所以

.

,所以.

,而,所以.

.

所以,即时,取得最小值,最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位.已知圆和圆的极坐标方程分别是.

1)求圆和圆的公共弦所在直线的直角坐标方程;

2)若射线与圆的交点为OP,与圆的交点为OQ,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某饮料厂生产两种饮料.生产1饮料,需该特产原料100公斤,需时间3小时;生产1 饮料需该特产原料100公斤,需时间1小时,每天饮料的产量不超过饮料产量的2倍,每天生产两种饮料所需该特产原料的总量至多750公斤,每天生产饮料的时间不低于生产饮料的时间,每桶饮料的利润是每桶饮料利润的1.5倍,若该饮料厂每天生产饮料桶,饮料桶时()利润最大,则_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱锥的底面边长为高为其内切球与面切于点,球面上与距离最近的点记为,若平面过点且与平行,则平面截该正四棱锥所得截面的面积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,当时,.

1)求数列的通项公式;

2)若,数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,线段上有两个动点,且,现有如下四个结论:

平面

三棱锥的体积为定值;异面直线所成的角为定值,

其中正确结论的序号是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点在平面外,过点作面的垂线,则称垂足为点在平面内的正投影,记为.如图,在棱长为的正方体中,记平面,平面,点是棱上一动点(与不重合),.给出下列三个结论:①线段长度的取值范围是;②存在点使得平面;③存在点使得.其中正确结论的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,函数

1)求函数的最小正周期与图象的对称轴方程;

2)若,函数的最小值是,最大值是2,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,底面ABCDE分别为棱BCPC的中点,点F在棱PA上,设

1)当时,求异面直线DFBE所成角的余弦值;

2)试确定t的值,使二面角C-EF-D的平面角的余弦值为

查看答案和解析>>

同步练习册答案