精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=lg(-x2+2x+3).
(1)求函数f(x)的值域;
(2)求函数f(x)的单调区间.

分析 (1)令t=-x2+2x+3,先由二次函数的性质,求出t的范围,进而可得函数f(x)的值域;
(2)先确定函数的定义域,进而分析内外函数在不同区间上的单调性,结合复合函数“同增异减”的原则,可得函数f(x)的单调区间.

解答 解:(1)令t=-x2+2x+3=-(x-1)2+4,
则t∈(0,4],
故y=f(x)=lgt∈(-∞,lg4];
(2)由-x2+2x+3>0得:x∈(-1,3),
由t=-x2+2x+3在(-1,1]上为增函数,在[1,3)上为减函数;
y=lgt为增函数,
故函数f(x)的单调递增区间为(-1,1],单调递减区间为[1,3)

点评 本题考查的知识点是对数函数的图象和性质,函数的定义域和值域,函数的单调区间,复合函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知a,b,c∈R+,求证:
(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc
(2)$\frac{b+c-a}{a}$+$\frac{c+a-b}{b}$+$\frac{a+b-c}{c}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知映射f:A→B,其中A=B=R,对应法则f:x→y=$\left\{{\begin{array}{l}{{x^2}-2x,x≥0}\\{-{x^2}-2x,x<0}\end{array}}$,实数k∈B,且k在集合A中只有一个原象,则k的取值范围是(  )
A.(-∞,-1]∪[1,+∞)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在长方体ABCD-A1B1CD1表面积为8,则体对角线AC1长度的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知递增数列{an}满足,a1=1,(an+1-3an)(3an+1-an)=0,n∈N*
(1)求数列{an}的前n项和Sn
(2)在(1)的条件下,证明:$\frac{{n}^{2}}{{S}_{n}}$≤$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等边△ABC的边长为a,过△ABC的中心O作OP⊥平面ABC且OP=$\frac{\sqrt{6}}{3}$a,则点P到△ABC的边BC的距离为$\frac{\sqrt{3}}{2}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.定义在R上的函数f(x),满足f(x+4)=f(x),f(1)=f(3),且f(x)=$\left\{\begin{array}{l}{x+2,-2≤x≤0}\\{\frac{mx+1}{x-3},0<x<2}\end{array}\right.$.
(1)求m的值;
(2)若h(x)=f(x)+f(-x),x∈[-1,1],求h(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆方程为$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{2}=1$,过椭圆上一点P(2,1)作切线交y轴于N,过P的另一条直线交y轴于M,若△PMN是以MN为底边的等腰三角形,则直线PM的方程为(  )
A.y=$\frac{3}{2}x-2$B.y=$\frac{1}{2}x$C.y=-2x+5D.y=$\frac{2}{3}x-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=-2x2+4x-5的最大值是-3.

查看答案和解析>>

同步练习册答案